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ABSTRACT:  A formal syntactic and semantic model is presented for 
'recursive definitions' which are generalizations of those 
found in LISP lor example.  Such recursive definitions can 
have two class i-s of fixpoints, the strong lixpoints and the 
weak fixpoints, and also possess a class of computed partial 
functions. 

Relations between these classes are presented:  fixpoints arc 
shown to be exUMisiuns 01 computed functions.  More precisely, 
strong fixpoints are shown to be extensions of computed 
functions when the complications may involve "call by name" 
substitutions; weak tixpints are shown to be extensions ol 
computed functions vhen tin- computation only involves "call 
by value" substi Hit ions .  The Church-Rosser property tor 
recursive dcfinltioni with lixpoints also follows from these 
results. 

Then conditions are giv»n on the recursive ckfinitions to 
ensure that they possess least fixpoints (of both classes), 
and computation rulea air >nven for computing these two 
lixpoints:  the 'lull' computation rule, which Leads to the 
least strong li,-.point, and the 'standard Innermost' computation 
rule, which lead, to the least weak fixpoint .  A genera] class 
of computation rules, called 'sate innermost', also lead to the 
latter fixpoint.  I he "lultmost innermost" rule is a special 
case of those, tor the MSP recursive definitions. 
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ADVICE TO THE  READER 

The essence of the material in this work is presented 

and discussed in Chapter 1.  Chapters 2-5 contain detailed 

and formal definitions, together with all the proofs of the 

results. They are primarily intended to be reference material. 

The conclusion contains some rtmarks on possible further research 

related to this work. 



CHAPTER 1 

GENERAL PRESENTATION AND DISCUSSION OF THE RESULTS 

1.1 Int roduction 

1.2 Motivation 

I.J Terms and Their Evaluations 

I.J.I  Syn.'.ax 

1.3*2 Semantics 

l.j'.7  Evaluations of Terms 

l,k     Recursive Definitions 

l.i'.l  Kixpoints ot Recursive Definitions 

1.-..  Computations with Recursive Definitions 

1.5 Relations Between the Fixpoints and the Computed Functions 

1.6 Monotonically Structured Recursive Definitions 

1.7 Fixpoint Comput .1 ti JUS 

1.7»1  Full Computation 

1.7-  Standard Computaticn 

1.7«3  Safe Inneraost Computations 

1.   Pitfall C0mput.1t icmv 



1.1     Introduction 

This dissertation prasenta ,1 syntactic and gemantlc modaJ   for  'recursive 

definitions' which are ganaralizationi of those Introduced  in McCarthy 

'I, 5> .1 

Each    'recursive   daflnitlW   vields   two   classes  oi    lixpojnts --   ,   the 

strong  fixpoints  and   th(   weak   iixpoints,   and  a class  of  computed   partial 

functions  obtained   b>   applying  dillerent   computation   rules   to   the   'recursive 

definition'.      Ir,  this work  we   first   show  the   relations   between   the  computed 

(unctions   and   the   itrong   flxpolatl   'Theorem   I),   and   between   the   functions 

computed   by   "innermost   subst i tut ie.ns" and   the  weak   fixpoints   .Theorem     ). 

We  are,   oi   course,   interested   in  those   fixpoints which   can   be  computed. 

We  give   a   sufficient   condition on   'recursive  delinitions"   to  guarantee   the 

existence  of   a  partial   function  which   is   the   least   (defined)   strong   fixpoint 

of   the   'recursive  definition'     Theorem   j),   and  also  the  existence  of  a  partial 

function  which   is   the   least   weak   fixpoint   of   the   'recursive   definition' 

Theorem   .    .     We   then  describe   a  computation   rule   l.r  computing   tin    least 

strong   fixpoint     Theo, em and   aoothai    for   computing   the   least   weak   fixpoint 

Theorem  ■     .     We   finally  give   an   additional   class  of   copulation   rules  which 

lead   to   the   least   weak   fixpoint      Mieorem   f). 

1    We  use  quotation marks   to   avoid   possible  confusion with   the well   established 
meaning  oi   the word    "recursive"   in  computability  theory.     Our   'recursive 
definitions'   include   as   special   cases   those  used   by  Kleene   'l . * }   and 
others   to   define   recur   ive   functions,   but   some  of our  results  are   actually 
more  general.     We  will   omit   the   flotation marks when  no  confusion can   arise. 

»_!     Informally   speaking,   a   lixpoini   oi   a   recursive  definition   is   anv  partial 
function which   ■atlsfies   the  definition. 



Recursive definitions were introduced long ago, for example by Herbrand 

l93l), Codel ;!'>;. Kleene  1 •• ) and, in a different way, by McCarthy (1963). 

More recently, tCCUnlve deflnitioni hav« been studied by several authors: 

(a  Morris  1 « >■  emphasizes the distinction between the two ways in 

which a recursive definition can be considered, namely as defining fixpoint 

functions or as a means of defining computations. 

He also mentions the two possible types of fixpoints, and states a 

theorem and a conjecture , both ol which can be shown as special cases of 

our results. 

(b}  Manna and McCarthy ^1 '"„) present two computation rules which they 

call "sequential" and "parallel", and give an example to show that there 

arc other intuitively appealing computation ruler,.  The "sequential" and 

"parallel" roles, as weil a;i the one suggested by their example are special 

cases 01 the rules that we present in Section 1.1+. 

fc)  Manna and Pnueli  1 TJ       formalize computations with recursive 

definitions as sequences 01 terns. Our formal computations are generalizations 

of theirs. 

d  kosen 17"1) establishes, in particular, the Church-Rosser property 

for recursive definitions which are essentially equivalent to those that we 

consider in Section 1,6.  This property is also a consequence of our results 

of Sections 1.  and 1.' .  Rosen further establishes that such recursive 

definitions possess what we call a   strong fixpoint (which essentially solves 

the conjecture in Morris ,1 68)), Our proof of this result is quite different, 

and has the advantage of being constructive, that is of exhibiting a computation 

rule which actually yields the fixpoint in question. 



1.       Hotivat ion 

!his  section presents some elementary examples and attempts to 

provide an  Intuitive background  for our model  of   'recursive definitions'. 

Let  us consider  first   the well-known recursive definition of the 

iactori.il   function over the  Integers: 

'   x,     =     il   >: -       then   1   else  x»F(x-l)). (j^ 

As   emphasized   in   Morris      1  •■        .   and   Hosen   (I  71) ,   there   are   two   different 

ways   in  which   one   can  consider   this   definition: 

a       as   a   functional   equation   in   Che   variable   "i",   (the  equation 

being   implicitly   universally  quantified   over   "x")J 

>       as   a   recursive   del .nit ion   oi   V  whereby   I-   :■■     is  defined   in   terms 

of F(x-1   . 

It  is essential   to understand  the difference  between  the  two approaches. 

a In the first ipproach, one is Interested in studying the partial 

functions "F" that satisfj the corresponding equation, i.e.. the fixpoints 

ol  tiie equation.     i   is a   fixpoint   ol   the equation  If: 

/n .  f(n i1  n then 1 else n*f(n-J (1)1 

lov  tllis equation  to  be meaningful,  one must   defi.je  precisely  the value 

ol   the   right   hand   side   ol      1        for   a   given   partial    function   I   and   for   a 

given value n ol   ••■•    Let  us temporarily denote  tins value    r(f,n 

if  .-/e take; 
1 1    n 

1   n r 1 1    n 

we  see   that   then    Ls no difficulty   in defining     -   I.n    ■ if n -       then  1   else 

n^ffn-l),   if   we   consider     " i I . . ... hen . . .e 1 se . . . "  as   a   Inaction   oi   throe 

1    Where   ■.:   is   defined,    tor   example,   as   being   the   number   ol   permutations  of 
n   objects,   or   by   some   infinite   ta)le   trom  which   the   values   are   read. 
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arguments in the obvious way (conditional comu'clive'.  It is easy to see that, 

tor every integer n, f,n ■ 1 J.";. i.e., | Is a ii ".{joint of 'l) . 
* f 

Since partial functions can Lake the undefined value UJ ~ , wc must be able 

to give values to expressions which contain undefined arguments.  For example, 

if wc take: 

/ !i!   if  n > c 

|(B) = 
[& if  n •. 0 

we have for n = 0: 

Tfg,0) ■  if T then 1 else 0*u). 

If we define 0«n = uu > wc obtain: 

f'giO) =  i1 f  then L else uu) . 

Now, if we define in addition [if I then 1 else wj   = 1, we finally get: 

T(i.O) • 1. 

In fact, the standard definition of the operation '»' and 'if-then'else' can 

be extended for uu in such a way that g is also a fixpoint of equation (1). 

In general, even after fixing the meaning of the base functions for 

all possible values o! the arguments  including m)i a'recursive definition 

may have more than one fixpoint ''possibly infinitely many) -- or none at all. 

(b)  In the second approach, one is interested in defining ways of 

actually computing F by using the recursive definition.  For example, 

let us describe the natural way to compute P(2) by using the recursive 

definition (1): 

r{2)  -» it 2 ■ 0 then 1 else 2»F{1) 

-♦2»F(1) ^since 2 = 0 is false) 

1/ The undefined value ou can be considered as the value associated with 
a non-terminating computation. 



r 
-» 2*(il 1  "  0  then   1 else  1*F(0)) 

-♦2»l»F(0) .since  1 = 0 is   false) 

-4 2#(i|i 0 =  0  then  1 else   .*F(-1)) 

_> 2 *1 (since  0 ■ 0 is  true) 

—> 2 . 

Such a computation appears as an alternating succession of two kinds of 

steps:  "Simplification" and "Substitution". 

In the simplification setps , all the expressions that do not contain 

the function variable F are evaluated, expressions of the form "(if T 

then A else B)" are replaced by "A", and expressions of the form "^if F 

then A else B)" are replaced by "B". 

In a substitution step, an expression of the form "F(n)" is replaced 

by "(U  n = 0 then 1 else n*F(n-l))".  A substitution step occurs only when 

no more simplifications can be performed, (in more complicated situations, 

substitution steps could involve the replacement of F(a) by the 

corresponding righthand side of the recursive definition even when 

a.    is an expression containing F. This corresponds to a "call by name" 

computation and will be discussed latar in detail). 

If such a computation of F(x)  terminates with an integer n, we 

say that the corresponding computed function f takes the value n at 

x,  i.e.,  f(x) = n.  If it does not terminate, we say that f is 

undefined at x,  i.e.,  f(x) = u). 



One should be aware that sometimes by adding simplification rules one 

may extend the ccriputed function, (i.e., one may change nonterminating 

computations into terminating ones).  For example, the recursive detinition: 

F(x) <■ U f{x)  =   .  then 1 else 1) (2) 

over the integers, may yield two different values for f(0) , which depend 

upon whether or not we apply the simplification rule; 

'(il A then B else B)' replaced by ' B' ■ 

if we do, we get thct f(0) = 1, otherwise that f(0) = UJ. 

The sequence in which the substitutions are performed can also affect 

the convergence of the computation. Consider for example the following 

recursive definition (Morris (1966), p^6): 

F(x,y) <= i_f x =  then 0 else. 1 + F(x-1,F y-?,x))       (j) 

Let us compute F  ,1),  The first step is: 

F(2.1j -• 1 + Ffl,K -1,2)) 

Now we see that there are two ways of continuing the computation, 

according to which occurrence of F we choose to replace by the recursive 

definition: 

(1)  if we choose the "innermost" one, the next term is: 

1 + F(l,l+F: -. ,F'!,,-r ) ) 

(il) if we choose the "outermost" one, the next term is: 

2 + r(0,F(P(-lf  - M, 1 

In both cases we have three ways to continue. 

It is easy to see that if one keeps substituting for the outermost 

occurrence of F, the computed value is f(l ,1) =2, whereas if one keeps 

substituting for the innermost occurrence of F, the computation does not 

terminate, i.e., f(2,l) ■ ID, (which incidentally, shows that the innermost 



compuiations are not, In gen«r«l, thos« Uiat terminate whenever possible). 

So in general, dl£farant computation maehanlKna can lead to different 

results, and there ton- we have a class ol partial functions computed with 

a 'recursive definition'.  Our aim in this work i; to study th? relation of 

these compuLed function.; with the lixpoints of the 'recursive del initions' . 

We will at this point introduce some of the formalism of our system. 

1. -  Terms and Their 1'A'aluat ions 

1.:.1 Syntax 

Ihe terms which are used in our 'recursive definitions' and in 

the formal computations are constructed from the symbols of an alphabet 

*J 
consisting ol a unary function variable T, an individual variable x, "' given 

n-ary function letters  §., individual constants  c., and  x 'which stands 

for the symbol of an "undefined" element., as follows: 

a  :■:, C. and x are terms . 

b   if      ',...,;  arc terms, and g  is an n-.'-.ry given 

function letter, then i;.  ', , ■ , ..., U   is a term . 
.il n 

■'c ,  if  I  is a term, then  F  ^, is a term. 

d,  there die no other terms than those which can be obtained 

trom  a by a finite number of applications of  b, and (c) . 

For example, g  F x , g  c, a))) is a term. 

\ .i,.       Semant i c.. 

We defi ic the semantics ol the system by interpreting, in the 

natural way, the c.  'a as elements c. ot some domain A, x as the undefined 

element x —-■ and the g. 's as partial functions g. . as explained on the 

following page. 

—For convenience, wc only discuss in this Chapter recursive definitions with a 
single function variable and a single individual variable.  In Chapters 2, J, k 
and 5 the results are stated and proved for recursive definitions with several 
individual variables. The results can be extended to systems of such recursive 
definitions  See Appendix II;. 

12/M has in fact the formal properties of an expression whose computation does not 

terminate. 
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A subset D of A (B i A) is also specified as part of the interpretation 

It is the domain ol the unknown partial functions  f's. 

Note that an  element of the alphabet is represented by a letter 

underlined with a '.' , whereas its interpretation is represented by the 

same letter without underline.  We will omit the underline ',' whenever no 

confusion can arise. 

The interpretation 01 x and F will be discussed in the next paragraph. 

There is a technical difficulty .nvolved in the interpretation of the 

..i  l : in most cases, one is interested in computing partial functions over 

some domain Ü e.g., the integers, the lists, etc.), but one needs to evaluate 

some terms outside ot that domain  ior example, predicates;.  Tr cope with 

this problem. Manna and Pmieli  1/,) define two kinds of terms in their 

syntax:  the condition«] terns which evaluate in D+ ~ ]   and the propositional 

terms which evaluate in [T.P)4'),  Instead, we let the domain D of the partial 

lunctions be a subdomain ol £., the domain ol   our semantic interpretation. 

In most of our examples, fl is D  [1,1}.  [n general, each n-ary given function 

is specified as a partial function over a subdomain of {&+)*,     Tnen, as shown 

below, the conditional connective! can be introduced as given functions, and 

so we do not make a special syntactic treatment for them. 

Example:  The conditional connective 'if-then-else' is usually 

understood as a ternary function over {T)F]+ >  D+; , which is a subdomain 

■ + ■' '' , / 
oi    L  i     ~     D J fT,F] J ^xj I , and can be defined in several ways.—;/  Two 

variants ol the ' il-thrn-c-1 ,<■ ' connective have been discussed by Manna and 

McCarthy  1970) ! 

a,  the segue tit ial 'if-fhen-else ' , where, for every x,y e D+: %!£/ 

if T then x else y) H X 

•J  D     stands   for  D  J   J») i   in  general,   lor   any  set   S,  we denote  S  J  (OJ)   by  S+. 

Ü/  Notice   that  we  use  onl>   one   symbol   a,   instead  of  using  one   for D  and  one   for 
the  truth  value  domain  [T.PJ,     In  fact,   the  interpretation  is  not  constrained 
to have  a  truth  value  domain  {T.F}   distinct   from D.     The   formal   treatment  of 
chapters     "5   shows  that   this does  not weaken  the  results. 

J*        indicates  the  equality  relation  over  A+;   therefore ou ^ uu is  true. 



if   i   then   K  o 1st.   y/    -  y 

it   JL   then  x  vise  y,        m 

b       the   par.il le I    ' i 1-t luii-t-l si ' ,   where,    for  everv   x,y   |   Jj   ; 

If 1    t lien   x   t 1 M   y)        :< 

i t   F   then   x   e1se   y] y 

i t   x   then   x  e Ise   x     -    x ,   and 

ii   a   then   x  else   v x when   x   i   y. 

Note   that   the   parallel    'it-then-e1 si '   is mure   delined   than  tht   sequential 

1 i f-then-else ' . 

1. ■ . "'     Evaluations   ul   ierms 

Informally   speaking,   once   the variables     f     and     x   are   specified 

I.e.,   bou id   to  given   values   ,   a  term   -   J-,x     can  be   evaluated   in  the  obvious 

way     i.e.,   the   inner   tubtentl   are  evaluated   lirst,. 

There   are   two   natural   ways   ol   specilLying  x  ard  1: 

a       one   la   to   specify  x  as  an  element   ol   D  and   F  as   a  partial 

function  ovt-r  I;     i.e.,   a napping  oi   1)   into  D 

D       the   othei    is   to   specily  x   as  an  element   ol   D     ~ and   F  as 

a  partial   ^unction  over   1)       i.e.,   a mapping   of D     Into   D   ,.— 

Correspcndiu,:   to   these   speci i icat ions  ot   the  variables,   there 

are   two  ways   of   cvaiusting   the   terms,   which   yield  wtut   we   Cttll,   respectively, 

the weak  value  and   the   strong  value  ol   a   term. 

•J     the   weak value ol   T  -   •   K.x,   tor  F   being   f   |  pf 'D;        and 

x  being  (cO   is   an  element   ol   L   .denoted  T   f,|),  which,   is  defined   inductively 

as   foilows : 

•    One mav want   to  allow     ■:     to   range  over  D+     i.e.,   with   possibly undefined 
value   ,   because  one may  want   to  consider     x     as   the  value  of   a'computation 
which may  be   :iont c rminat ing   . 

•*/ ■      + 

-'What wc call a "partial function over D " La actually what is usually 
called a total function over 1J

+
 e.g., in Morris (1 »>) .  However, we 

find it convenient to consider such a function as a special case ot a 
partial function of a domain S into a range R, where S = D+ and R = D. 
See Appeadi- 1 for a presentation of the main results regarding those 
f unct ions. 

We denote the set ol partial functions over D by pi D) and ttie set ot 
partial functions over I'4 bv pf D+) . 

10 
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ii       i i 

i ■   y., 

In c 
i V 

iii 

Iv 

11 ■i, T i, : 

ii   '   Li  , 
i     1    iv • 

'!        i '.    thcrf   ,irc   two   uaacg; 

v.l)  If *<• f,J        x  then   •   : .- 

v. ')  i'       i ,-    /  JL then ':  ftt 

K.    Tj     f.? i iC 

tin's  special  rule  and  its 
rftect     we discussed  below); 

!    P 

+ , 

as   follows: 

th<   ^tron^  valu^ol     -  -     •   p,j,     for   u  fia§   t&i   D and  x 

1«   an  cleric:,t   ol       ^.dt-noteci        f.j   .which   is  dcfitMd   inductively 

i,      "       iv   :     as   in  case     a 

v.      if   "   is   :    /     then  -   t,l]   ■   1   5(f,| 

The only dlffcrenc«  bcttMen the two Bvaluntloni r«tid«i  in the 

evaluation of  the   ternis   !■    ,   .      i.    the   Mrst   ,-..,.     ain   ,,     t      • ' i     L",-     irsi   case,   SI'KC     i     is  a napping 

I   D into L)+,   f ,]   has  no meaning:     the solution adopted   is  equivalent  to 

arbitraril>   setting   i  x , .      !„  tht   secülu]  c,,SCi   tincf     .      js   a r,apping  0 

D+  into D*,   ; x    ii ipecified. 

Thi« differcne« turm   out  to be an i isenti«]  one,  a- will be see.i in 

Section   1... 1. 

1   •    lecuriive pefinjtiona ' 

A 'recursive definition*ifl an expression ol the lorm F x = - f x) 

where t is a tenr. over an interpreted alphabet. We use Ü to denote the 

partial   tunctio.i    donnin   of   f lie   Interpretation. 

1 . • . 1      Fixpoints   of   Kecu:.sivt   . ie I ini t ions ' 

Let   f   x,   ■=   ■   i ,y     be    a   recursive   definition.     The re  are   two   types 

I/We   are   implicitly  assumin,   here   that   th he vector   r. f,{)  T  f ,§) > 
belongs to the domain ol g. .  In  hapter . , we present a Method 
for relaxing this assunption. 
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ol   lixpoint   function! oi   thla   'rceurtiv« «toflnltion', co-rcipiMidiiii to the 

two tvAluatloni ol  -   F,n    AUcut—4 In th« previou« p«r«gr«ph: 

a       A  parti.il    CutiCtion   I   over  D  is   | h^ii_.LLlEiliili   l"   th« 

'recurs ive   lie t init Ion '   it: 

\f5cD   :   '  ?        'r  J.?;    : 

b       A partia!    hmctiofl   I   o-er  ]/   is   a   stronr.   lixpoint   of   the 

'recursive  definition1   If; 

VfcD*   :   f/f        ^  i  - 

Ihese   two   typo»   ol    flxpointa  are   in  g«n«r«]   COapUtttly  ditlerent: 

there   are   'recursiv.   .i.! i n. t ions '   ^which  l,ave weak   lixpoint.,  hut   no   strong 

fixpoints;   other,   have   strong   fixpointl   but   no weak   flxpoittt«,     There   are  even 

recursive   cieiinitions   ^tch   have  weak   lixpoints   md   ftrodfl   .ixpoints which 

Hf  novher.   on   !).     ExMpUg  of   su: h   recursive   do 1 in, t ions  can  ho   .ound   in 

Section      .•.      oi   Ciuiptci       .      However ,   ve   SIK, 1 I   sec      Section  I.?.;       that, 

lor   an   important   .ubcUsa   of   'recursiv.   de 1 i ni t i ons ' ,   , lu   w.ak   flxpointa   and 

the   stron.;   fixpointl   ol    ,uch   recursiv.   delnutions   have   t!..    propertj   that   they 

are   »11   extensions    -ol   one  ol   then,,   "he   least   woaK   fixpoint   ol   the   recursive 

definition.      A weak    re.p.  stron«    lixpomt   f of a given   'rocur.ive deflnltK«' 

is said to be a  loa^ ..ak   lixpoint    resp.   itroag)ol   the   '..cursive definition' 

ii  eve-, went     resp.  urong    lixpoint  ol   the recursive   definition is an 

extension   —    ol    1   , 

1 . • .       Cowputations with Recurs! ve  De 1 in i t ions 

A nature]   way ol   foraalizini caaputations  such aa tiie eaoi 

UforMUy presented  in Section  l.l   is ■ ilk.r the« as a sequence ol 

we 

Wfl   mphasi»   again   that   v.e   use   the  u, .ursive"   to   indicate   that   the   function 
variable   appears   in   both    lidea   ol   the   '■ocursive   definition"     i   e     that   T   is 
defined  m tema ol   Ueelf.    which  La the usual   Intended neaning in progrwnlng 
Languagea    e.g.  recursive procedure.,     it   la not   Intended  to mean that -(F x    is 
recursive in I or x in the sense ol the recursive function theory.  In fact''so 
Mr  the base functions of the model may well be non-computable.' Kestrictiöns 
on the base lunction  arc only needed fir Theorems  - 

it f and | are partial functions over a set S  i .e Bappinga Ol S iiuo S+)     we s .y 
l"dL 8 1 ■■   an iLXtension ol f iff:   Vx»$)      f v  / „ -  f'v    „f^ e— I    u   »«€-;  i .X; / JJ -  i x   gixlj. bee Appendix 
I lor general properties ol this extension relation. 



terms,   tianslorwd   by   s acct-ss ivc  inanipul at ions .   in   tin   Ityl*   ol   X.-mna and 

!'auel t     197 

Given a'recursive  definition 

!•   x     <•  T (F ,X    , 

wf define a cotputetlon ol  ■ ten u F,x    for x = c, where c  Li an elMMnt 

ü!  ü+, ab a leauence of  tenia ^   , where: 
i 

:<    -^  :>  F ,c ; , 

and.   for  t >     ..     .if  deduced   from  -j.   bv  a   Unite  nuirbor ol   applications ol 
-   i+1 i  ■ 

two basic rules: 

ki-p; acenoi't of I   term 6 occurring in ./, by some term v where, 

for every partial function i over D 

= ' f, c = v r , c , 

*/ i.e.i   replacements   that   must   preserve equality  oi   the   strong   values.   ■• 

2.     Replactünent   ol   a t^rn ol   tlu    fom  f{<g\   occurring   in  3.   by   [F,o) 

where j  can be  any   term. 

A cooputeti   i  t cm.inetej it  and only if it tventually reaches 

tone  valuo   in  L-        If   the  computation  reaches  x   it   is  OOl   ^on   1 lered   to have 

terminated . 

Rule   i   allows      ist   fa   iliir  limplifIcetion   rules,   such  as: 

fa      tor  the  iipquentiel   'it-then-elee'  connective! 

' :J_   1   then   A  • jjic   B A , 

:'   '    then  A | !se   8}    • K,   and 

; i   j   the n A el ic  'i,    • x   '■ 

{h      for  ; in   parellel   'if-then»elie1  connec* ive : 

Li ■'' then  i '■ j se :'.■-• B   ; 

a"      for   the  mn!tipiicat ion   function   '*'   over   the   integers 

■xtended  by     \       i." ■ 

•Notice   that   the definition  ol   a   computation demands   that   an   inti--pretation 
ol   the   alphabet   be   supplied. 
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•A aiui 

.iiN      ioi   the  multiplication   lunction   '•'   over   the   inti-^crs 

exteiaU'd  by  1 ■■!.■  - a*!  = x 

1*A   • A, and 

AM    . A. 

It   also allows  the   replacement   of  given   functions 

[with  completely   speciiied   argiimtnts)   by   their  values,   that   is: 

itel»'"»^)     '0 where   b       |(«. ,...,« ), 

But in tact there are many 'non-standard' replacements that 

are allowed by Rule 1.  For example, 

[•]  "Backward" calculation';, such as: 

A » (11 I then A else B;, or 

b  Replacements indicating more sophist it ated "logical 

deductions", such as: 

(11 F(x      then K 'x) »Is« 0)  > 0. 

This last e>:,iinple is the one that Manna and McCarthy [1 ffi )   use 

to luggett appealing computation rules other than their 'sequential' and 

'parallei' rules. 

It should be emphasised that, l)icause ot Rule 1, computations 

depend on the interpretation ol the alphabet:  some replacements which are 

allowed within one Interpretation can become illegal in another interpretation. 

Rule   clearly allows not only the "innermost" substitutions of 

f(ct)   by -   F,©] (that is, vhotl flf is a constant', but also any "outer" 

substitution ot a term F v  by T K.v) (that is, when , is an arbitrary term which 

may contain P'»).  Morris  1 l68] and Rosen  l^'l) use ttic phrase "call by name" 

to designate these "outer" substitutions. 
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IfUernuHl i at i      tepi   . .n     "    ikipped   in  ■  c<MBp  tAtlon,     For 

I'yanipU',  one may  replace a     ic<     ••  i  •      ;   . is     »mputed  va  i    .  ■stu ang 

it   is known  from previuu    i   uiputati   na, 

I ^r  ■ gtven'ri    irsive  di i   iiition',  then   .irt- ol  course mam  ways 

in which one cou] I app      thes*   rul< i   to ■ given u-rm.  and eontequcntly there 

nay be ■  lerge numher ol  different   coeipucetJ >nf of chii  tem« 

So in generel,  there are nany romputed  functiona ol  ■Vccureive 

definition,   A partial   function   f ovur  D-*-    01   over L)    is   said  to  be  a  computed 

i unct ion of  a given recur ^iv».   deli nit ion over  D      or over  D     if  it   is   such 

that,   for  every xeD      or   :or  every  XcO] ! 

i)     it t(*     /   i   then   there   is   ■  computation  of  F  K]   which 

tenninates  with   f  .<   . 

ii       i1   i .>■ y   then  there   is   a  computation of  FV   wliich   does 

ot   terminate.   * 

1 • 5     Rel.it ions   !k tween   t la-   ii   joints   and   tin-   Cornput.d   Functions 

Vc   ROW   come   to   two   imp   rtant   results,   relating   thefixpoints   of 

a  given 'recursive  definition* to itl   COO^Uted   funct'ons. 

itiKuKKN   1 .      'or   >-vc r y 'recurs ive   de t in i t ion',   every  stront:   lixpoint 

is   an  jXtcn^W]  oj   everv  co.iputel   function over  I)   . 

THEOREM     .     lor ever.  Vecuralve   definttion^   a  ery weak   fixpoint   is 

a:-!   exten-:on   M   evtTj   com]   ited   Junction   OVerDobtained   by   innermost 

computat ion.   — 

^  It   is   clear   that   'conputed   functions"  as  we   have   delined   them  may   not   be 
'tomputaiile"  in  the  uaud]     umput ibility   theory meaning.     This nakes   • heorns 

1   and        stronger.     Notice   also   that   the   notion  of   "computed   function"  is 
relative   to  ■  particular   recursive  definition. 

••/ 
-'An   inn.-i-      r   canputatiun   is  any  computation in which  oaly  call   by  value     is 
permitted, that is, I / may be replaced by - F,a) onl 
-y is an individual conatant 

y when 

1 



The proofs of CiMt« results arc given in Chapter }, 

Theorem 1 implies that: 

• U  one oi :.1( coaputtd functioni is a ttronf flxpolnt, then it 

is   a   least   stroiiK   lixpoint. 

Therelore,   i!   • V.CttTilV«  de!inition'does  not   have  a   least   strong 

lixpo.nt.   no computed   function  can  t.e  a   stron«   lixpoint   ol   this   'recursive 

definit ion ' . 

(b       AWur.lV«  d^inition-cannot  have more   than  one »computable' strong 

fixpoint     that   is.   a computed   function which   is  a  strong   lixpoint). 

c        If  a 'recursiv..  del init ion'has  a   strong   lixpoint,   and   if  two 

computations   for  a  given  x   in  ü+  terminate,   they must   terminate with   the 

same  value.     This   is  .  .hurch-Rosser   type   result,   and   it   also  appears   in 

Kosen     1      1   .     »OMB'.   proof   ol   this  corollary  is  entirelv   iiif.ftt   from 

ours,   and   does  not   rely   on   the   lixpoint   idea. 

d       The   result   ol   My   termnating  computation  ol   Fix)  n.ust   bo   the 

value   at     x     of every  Dn<   ol   t.e   strong   fixpointl  Oi   the   'recursive 

definition'.     This   tap   I,  ,   that : 

;i.   ii • Vecur.iv« d«finltion,h«i a .troni  fixpoint which is 

unde.ined   on   some  Wbdc.in   D'   oi     u\   th.n  no computation  oi   tfr   c«  terniinatc 

on  D ' . 

Kxamivle:     Con.id«r   again   the   recursive   del init ion   ol   thL. 

factorial   Function over  the  integers: 

^   x        "      Ü  x   -  _   then  i  else   x ' (- ';,-_l_   ) . 

In   section   I.     we  MMtiotMd   that   th.-   partial    lunction; 

i.' iln 

g n 

x i f   n 
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was  a   tixpoint  ot   Chfl  recursive  definition   lor   the  appropriate   interpretation 

of the given  Euoctionsa    it   followi therefore tiiat  no computation of F'x) 

using  this   recursive  definition  can   temlnete   tot  x 

(2)     In  particular,   it   lollows   that   no   'recursive  definition1for  which 

the totally undefined  function .. is a  strong  tixpoint can have 

terminating   computation^   ol   F  x   ,ior   any  x. 

Thud   il   F  occurs   tn T|   and   if  all   the  given   functions     g     used   in  T(F,X) 

are   such   that   g   . . . ,x , . • . £     i.e.,   are   undefined whenever  at   least   one 

argument   is  undefined   ,   then   it   can  he   shown   that  .    is   a   strong   Jixpoint  of 

F x    ■ = -  i',x   , and therefore no computation oi  the   'recureive 

de f init ion'can   t'rmin.ite . 

For  example,   tor   1   :•:       ■   I   x   ,   1   x     <• F(x ♦ 1     or   F  x    ■ =   F^ x ,   +  1, 

where  x   +   1   = x   ,   no   computation  can   terminate. 

This   implies   that   In   I Vi-cursive  de 1 i nit ion'having  a   terminating  computation 

at   least   one   given   function   iuis   to  be   scrtel imes  defined  when  one  of   its  arguments   is 

undelined.      Indeed,   both   the   sequential   and   parallel    ' it-then-e1se '   connective 

have   this   property. 

if a Recursive definition! has two   strong  fixpointi that 

differ   tor   some   x   ,   then   no  computation   ol   F   x       can   terminate. 

Kxample:     Consider   the   following  recursive  definition' over   the 

natural   numbers : 

1'  x     <■  if  (FIXJ       1   x   - l.+l,   then x el sc  u~ 

vlth   the   standard   interpretation  of     ,   •:   fwitli 0 * 1 ■ 0 and  ^  -   1  ?  UJ) ,  '' 

with   ,    f   1   -  x   ,   and   the   parallel    ' i i-lhen-e1se '   connective,      It   can  be 

Because ol   the presence ol     ,  the  righthand side of this definition is not 
"recursive"  in the sense ol  the usual  conputahility theory. 



shown  that   both   th.  partial   lunctions     t   n.,       0 and   g(n)   I    n  are   strong   fixpoints 

ot  this    rr«eur«lvt   dtfinltlon», ni«r«for«, no ccnputmtion of F(x) 

can  terminate   lor  x 

Similar  COn««qu«nc«l   can  b«   ohtained   Ironi Theorem .     lor   the   weak 

tixpoints   and   tha   lunctions   computed   by   imu-niiosl   compulations. 

By combining Theor«  l  and nieoraa    , one g«ta  for example that, 

ii   a'recursive  definition'h«a   I   weak   fixpoinf   and  a   strong   lixpoint 

which do not agree  for son,.- x ,:i),  then no  Lnnenoat  computation of F(X) 

can   terminate   lor   x   . 

it  is very eaay to give exaaiplea where a computed  lunction is not 

■   strong   fixpoint   01   the   'recursive  definition*,   or  where  a   lunction  computed 

by   innermost   explication   is   not   a   weak   fixpoint   D|   the   'recursive  definition'. 

We   now want   to  give   lUfficient   conditions   for   fixpoint   computations   (i.e., 

computations   such   that   the  o.r.puu-d   lunction   is  a   fixpoint   of   the 'recursive 

d e f i n i t i on'   . 

since there are Vecuraiva definitiona*without  fixpoints,  theae 

conditions must obviously concern both the 'recursive de I i n i t ions' and the 

computation rules. 

1•'  Monotonically Structured Kecursive Delinitions 

As indicited above, there are 'recursive- de 1 i nil ions'wh ich have no 

fixpoints at all , such as: 

V  x,      ■ ||  F X;   _  then I    else 

There are also 'recursive di finitions'which have strong  fixpoints 

lor example, but do not have any that are computed lunctions over D+.  For example, 

the Vecursive definition': 

F x. ■ -   i± F y.j       F x - !;+!_, then x else Q 

where the given functions have the same interpretation as in 

the  last  example  of section  l.5)i  has strong lixpoints, 
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r • .|.,  e(n) ■ n • , but does not have aii> Le«ft »ixpoint, and therelore 

none of ttMtt UxpointH cun be a computed tunction of the 'recursive 

definition' . 

We will now give a suflicient condition on 'recursive definitions' 

which guarantees tb. ex^tence oi   a least strong tixpoint and of a least 

weak fixpoint. 

We  first coaitruct an ordering < on (A+)" in the following way (see 

Scott [I969))s 

(a,  x s x and x < x :or  every xeA+ (all other pairs are unrelated) 

':j)  xi'x  x
n < >'l'>'. '••••>'n- 

iff 

(«I *   Y^)     and  x^ S y^;  and  ., 

X  •>>■!. n   n' 

and 

We say that a term ■ is a monotnnically structured when every given function 

occurring in Q is a Bonotonie in the sense that is preserves the ordering S 

defined above. 

Base functions, g'.; such that  g ' . . . ,.x , . . )  w     i.e., tiiat are undefined 

when at least one of their arguments is undefined, regardlcbs of the values of 

the other arguments" are nonotonic.  The sequential and parallel if-then-else 

connectives are also monotonlc; but    the equality predicate over £+) is 

not monotonic . 

Any function  g whose values are known for defined arguments can be 

extended on undefined arvuments in such a way that it becomes monotonic, 

''e.g. by defining §(,.♦,«, ...)  x as above. */ 

^/Actually, one can show that the strong lixpoints of this recursive definition 
are all the functions: 

C w  i f  x  -   x f C   i f x = x 

i^*]   =      )>li£0vx<l and   g.(x)   =     ,    K if 0 < X $ i 

I© If x  > 1 [ Q   if x > i 
for  all   i ,       < i < a   . 

1^/ln fact, one can show that it  g  is a partial function over AP, it has a 
mininal monotonic extension to (A

+
), which is the one discusser above, and 

a maximal monotonic extension to (A+)P.  In general it is not possible to 
obtain the maxima! extension in an effective way. 
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We  say  that   a  recursive  delinitlnn     ffx.)   ■=  T 
;F,x^     is monotonical ly 

structured  if    T(p,x)   is mouotonically  structured.     This  class  of recursive 

definition-   contains  as  special   cases: 

(i)     Kleene's  definition  of  partial   recursive   functions. 

(ii)     The  McCarthy  calculufl with  sequential   and  parallel   'if-then-else' 

connectives. 

The  interest  of monotonically  structured  recursive definitions   lies 

in  the  following  two  theorems: 

THEOREM -j. A mcnotonically structured recursive definition has a least 

strong   f ixpoi '''.t. 

THKOREM j,_. A monotonically structured recursive definition has a least 

weak  fixpoint. 

A characterization  of  these   fixpoints   in  terms of least  upper bounds will 

be   found  in Chapter -t . 

1."     Fixpoint  Computations 

In  '.he  remainder  of  this  Chapter,  we  describe  computation rules which 

lead  to the   least   strong    or weak,   fixpoint   lor monotonically  structured 

recursive  definitions,   thus   showing  that   the   fixpoints  of  Theorems   3 and k 

are   in   fact  computable. 

1.7 .1.     Full   Computation 

The full computation of a F,x^ for x = x is a sequence of 

terms a., starting with ^ " «(F,^] and such that ff .. is obtained from 

01.   by: (a)      first   (UTforming al1.   possible  standard  simplications, 

and  then: 

'h)     simultaiuuusly  substituting  for all    the  occurrences 

of     F     in    o.   . - 

A  standard  simplification     is  any  rule of the   form : 

g'A   tk   ,,..,A  )    * a    , 

"/This  is  indeed  possible,  as  shown   in Section 5«3« 
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■Mä. 

where ? 

(1) each A  is an Individual constant or a term variable 

(a term variable is a letter which stands for an arbitrary term); 

(11) no two term variables are identical; 

(ill) a is an individual constant (not w); 

(iv)  the equation tCfiifai***! ) ■ a holds, for every n-tuple 

< {|itt*f > in the domain of g such that,if A is 

an individual constant a ,  £ takes its value a . 

All rules that satisfy the above definition must appear in the 

set of standard simplifications. 

Examples: (a)  if T then 1 else A -» 1^ is a standard 

simplification since:   if T then 1 else UJ 
= 1« 

(b) If '•'  is the ordinary multiplication over 

the Integers,  then 5*2 -+6 is a standard simplification corresponding to the 

equation 5*2 ■ 6. This is a case where all the A 's of the definition are 

individual constants. 

(c) If '*' is the ordinary multiplication over 

the integers extended by 0*®  ■ w,     then 0*A -»0  is not a standard simplification, 

because the equation 0*0) ■ 0 does not hold.  However, if '♦' is the ordinary 

multiplication over the Integers now extended by 0*® m  0,(which is a 

monotonic extension)  then 0*A -» 0  is a standard simplification. 

The rules for standard simplifications are not completely 

deterministic, since the order in which the simplifications are performed is 

not specified, but one can show that the final term (after all possible 

simplifications) is the same, regardless of the order in which the simplifications 

are performed. 

As an example of full amputation, let us consider the full 

computation of the term a  = F(F(0)) using the recursive definition of the 
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factorial  over  the  integers.     The  sequence  of  terms of  this computation  is: 

o-   ■ a ■ F(F(O)) 

»j  ■ i* ((U A, " ft thgn J, 4LÜ, 0'K(0^1; )   = 0)   then  I 

idg£ ^2r0 JÜi^liSl^^F'0-l ))>Ff(if   UMJ  then 1 else 0*1(0-^-1 
r*s*~   ^^   ^s-' 

After   standard   .simplification,    I.   reduces   to: 

*    ■   l*f        11   and  the   following  terms  are: 

t    m  I*    'tf^0^0^ tjien__ 1^ elje^ g'F ^JU ) 

a   = i. 

We have: 

THEOREM ;:  full computation;.  For a monotonically structured recursive 

d_efinition. rhe part i al Junction over D+ computed by full computation is the 

stirong fix-point of the recursive definition. 

1 ■ ' -   Standard '.omputation 

The standard computation ol  £(F,x) for  >: = x  is a sequence 

of terms  3.  starting with i    m   i F,X ), and such that a.   , is obtained 

from /. by: 
i  y 

a^  first perlonning all possible standard simplifications, 

and then 

b)  simultaneously BUbgtitUtlng for all the innermost- OCCUrfOCta 

of F. 

TlLEORm j :   standard computation, .  For a monotonically structured 

recursive definition, the partial function over D computed by using the standard 

computation is the least weal: fixpoint of the recursive definition. 

Notice that, ircxi Theorems 1 and • , it tollows that for a 

monotonically structured recursive definition, the least strong fixpoint 

la an extension ol the least weak fixpoint.    Actually, there are examples 

for which the least strong iixpoint is strictly more defined then the least 

weak fixpoint.    Example (jj) of Section 1.2 is one such.  This example is 

Iran Morris (I968)). 'Ihe full computation uses call by name whereas the standard 

computation uses call by value; it is usually assumed in software discussion that, 
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in the absence of side etfects, the use of call by name versus the use of call by 

value affects the rate, but not the existence, ol convergence:  it follows from 

the above discussion that this is not true. 

1•?.? Safe Innermost Computations 

The standard computation is interesting for theoretical purposes, 

but it is by no means the only computation rule which yields the least defined 

weak fixpoint.   In fact, it is shown in Chapter 5 that; 

THEOREM 7:  (safe innermost computation).  For a monotonically structured 

recursive definition, any partial function over D computed using safe 

innermost computation is the least weak  fixpoint   of the recursive 

definition. 

A safe innermost computation of a(F,x) for x = x , is any 

sequence of terms 0, sucn that a is J'F,X ) and a.   is obtained frc 
i 0        u      i+1 rom 

\ by: 

•a,     first performing a set of safe simplifications fsee below). 

'b)  performing safe innermost substitutions. 

A set of sate simplifications consists of tl.e set of standard 

simplifications See paragraph 1. .1; augmented by rules ol the form: 

where 

g A1 ,A A )  • B 

av  the A.'s are either individual constants or term variables 

not nece sarily all distinct); 

*J b^      H    is  an     A.     which   is  a  term vaiiable; 

V 
i y w / 

the equality g(x. x^  y, where g ' is a regular —'extension 

of g, holds for aU possible values of the n+1 -tuple 

+ 
<*.,..♦,X,y> over A  such that: 

fi) < *.»♦♦#,«> belongs to the domain of g' 

*i~z 1— -'The case in which B is an individual constan;- is redundant because one can 
show that the corresponding rule must already be in the set of standard 
.simplifications . 

—'A regular extension of a monotonic given function g is a function g' such that • 
1) V ? € Dom(g), g'fjf) ? g ff) 
2) Dom(g,) = Dora(g) U [=: ^ (A )" I F-O and -n 6 Dom (g)l 
5) g ' is monotonic. 
See Chapter 5, paragraph 5»5A. for details 
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11)   For every i, 1 ^ i <: n: 

if A.  is a constant  a,, then x. =3. 
i i       i  —i 

if A, and A. are the same term variable, 
'     ] 

then    \.   = x.. 
i    ) 

iii   II  B !■ the term variable A., then v = x . . 
i i 

Note that there is no need that all possible rules  satisfying 

these requirements will be in a particular set of safe simplifications.  In 

other words, one is free to pick none, some or all of these rules to augment 

the set of standard simplifications. 

The safe innermost substitutions are innermost substitutions 

performed on certain kev positions.  To define these positions, we first need 

to define the x"set:s of a base function g;  an x"5^  0f a base function g 

in a teTi g a, , .. .,-,   ll ■ s(-''- t,: argument p. sitiuas such that il all are un- 
~ 1     ii 

defined in the sei, the corresponding veluc ol ^ is undefined! More iirmally, 

it is any subset I of | I nj such that, ior every i€  I,    is not ■ constant, 

and the equation: g :<^ , • • • ,x^ a 

holds for every n-tuple  >;,...,>:    in th" domain ol  g  such that: 

tor every i € 1, >:. = x, and: 

fur every i,  1 ■' i •- n, such that a     is a 
i 

constant  a.,  x.  takes its value a,. 
,.ii i 

hjcample.  In the tei-m:  il p' I",:-;  then g F.x- else h F.x'. 

the sequential 'if-then-else' connective has five ^-sets: 

ril, fl,2), fl,3), fa,}}, [1,2,315  the parallel 'if-then-else' 

connective has only four x-sets;  fl,2}, [1,3^1 [2,3)» [1. -'1• 

Now the key positions in a term ^ where safe innermost substitutions 

may be performed, can be determined inductively in the following way: 

fa)    if a =  , c or -jj,  there is no substitution to perform; 

'b)    ii a = &(  tti «oo* *«*tab|}i then simultaneously perform the 



r 
substituiions in the key positions in a    for all i€l, 

where  I  is any  x set ol g in g (note that this is a non- 

dctcmlnistlc proccn, ; 

c ^     if  5 = F p) wt- distinguish between two cases: 

i   il a  contains V,     then perform the substitutions 

in the key positions in  p; 

ü  if i  is an individual constant then subs:ituU-  P,j  lor 

P{ o^ . 

The intuitive idea behind this is quite simple:  because the ^-SL-ts 

of a given function | indicate positions such that when they are undefined 

the whole function becomes  undefined, "in-depth" computing within these 

positions should be salt -- i.e., computations of these arguments must 

eventually terminate h th ■ computation of the whole function is fco terminate. 

The 'sequential' and 'parallel' computation rules of Manna and 

McCarthy  1 /VO  are sate innermost computations for the recursive definitions 

that these authors consid-.r. 

1.'■■     Pitfall Computations 

In this section, wc discuss several examples of 'recursive definitions' 

and/or computations which do not satisfy fchc sufficient conditions of 

Sections 1.' and 1,7» 

Example 1.  Consider the recursive definition 

P(K) •- FixHl 

over the integers. 

For any integer, the standard computation of F'n using this dcfiftifcion is: 

F^n) -. Ffn)+1 -. F(n)+£ •->  

which nev.?r  terminates. 

It   follows  that   the  computed  function  for  this  recursive definition is f), 

the  totally undefined   function.     For    fl to bc a   fixpoint  of  the  recursive 
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definition, it is however necessary that UJ 
= D +1; if we had 

a.» ^ tu +1» then "+" would not be monotonic, which would violate the general 

requirement of Section l.i . 

Example 2:  Let us consider the following recursive definition: 

F x   =  if x = C then Q else Fx-l 'F^x+1)) 

over the integers. 

If '•'  is dexined so that L'jj ■ -JJ'O   H and ' i f-then'else ' is 

the sequential conditional connective, the partial function computed using 

the standard rule is: 

f C if n = C; 

■x otherwise. 

ijin*   is a fixpnint over I) of the recursive definition, in ac ordance 

with the results of Section 1.7. 

Now let us modify '"' so that O'x    i'C   0,  and cons der several 

different computation rules: 

(#j     If we still compute using the same rule as above 'i.e., without 

simplification by 0 , then we again obtain  in), which is no longer a ' 

weak lixpoint   of the equation.  In this case, l,' is still monotonic, but 

we  have violated the conditions of our standard computation of Section 1.7. 

Since the equation: 

holds, we should have used the simplification rules: 

O'A --. C and A«C -• 0 

If we use these rules, and if we perform the substitutions in parallel, 

the computation becomes a standard computation, and we obtain the function: 

cc(n) 5 0 (for all n) 

which is the least defined weak  fixpoint of the recursive definition. 

^b)    However, if we use the "leftmost innermost" substitution rule, 
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with the above simplification rules 0*A -»0 and A*0 •  , we obtain  the 

tunct ion ; 

i i n 

I  x  otluTwi M 

which   is   not   a     wi.ik   fixpolnt     of   the   i-qu.Uion.      Ihis  mt-thod   ol   lubttltutlon, 

however,   is   not   a   sale   Innenost   suhst it ut i on   according   to   Section   1.', 

since   the   onlv   i   -   set   ol    '*'   in   tliis   case   is   [I,   },   wliicli   r«quir«l   thai 

substitutions   be   periormeil   on   both   positions. 

Kxariple   _ :      Consider   the   recursive   definition; 

!    x     • =      tf  F   x then   F   (x)   else 

where   l!ie  conditional   connective   is   the   parallel    ' i f-then-e! se ' . 

Che   partial    function   computed   by   anv  of   the  rnetliods   ot   Section   1. 

will   lead,   to  the  undefined   function.     However,       is  not   a   fixpolnt   ol   the 

'recursive  delinit ion ' , s i nee   tor  every   x,        ;■: x,   whereas: 

, >; ill'        then  j,   e 1 se 

il   1    t hen a   e1se 

= 

In   this  case,   i   i ,.•:     does   not   satisly the   requirements  ol   Section   1 .• 

since       is  not  Bonotonld 

There   ia  one  w.r,   to  ^.'et   around   tl i      --   in   this   particular   ease   -- which 

is   the   following:     consider  T(P,X     to   be:     g(F(x).ß),  where  g  y,z     ■  il 

/.   then   y  else   z    .      Now   it   can   be   checked   that   K j_s  monotonic   and   vcriiies 

the   i dentity: 

Vv,z   :   K  y ,z .    t t 

There tore,   /  has   the   'sate''   simplification   rule 

I  A,U       • B 

•ccording  to Section 
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• mr'ximi 

Hence the computatiun step 

g(F(x),0] • 

is now legal, and Kads to th« least defined iixpoint over D of the 

equation, which is the constant lunction always equal to ü. 
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2.1 Int roduct iiTi 

In this chapter, wc pr««cnt th« syntay. and th« st-mantits oi our modt-l 

of 'rec-Lir.sive cU-f ini t i .„.s ' . We Kive fOHMl (Uflnltiona of the COnc«ptl of 

fixpoints and COBputed function« Oi such 'recursive definitions'. 

Syntax 

- ._.1  Alphabet 

An alphabet, denoted A F.x , is a collection of symbols par- 

titioned in the following way: 

,i)  There are n symbols, denoted  x., I < i j n,  which are called 

individual variabUs.  We denote- the n-tiiplL. ^x- , x , . . .  x ^ 

by x. 

li  There is one svmbol , denoted K, which is called function variable. 

iii  There is a n .n-emptv set C of symbols called constant symbols. 

iv  There is one special svmbol, denoted :,     whicti is called the unde- 

fined symbol. 

v  The other svmb -Is are called fiiven function symh .Is.  Jhe set of 

given function symbols is partitioned into class.-s  (. , G , .. .  G 
1 >   • ■ ■ i  p , • 

where, for rverv positive integer f,   the elements of  (■„  are called 

th»  p-ary gfevgn lunction symbols. Sam   >r all the C.   's may be empty. 

The symbols  iii ,  iv ,  v are Jenoted by small letters with an 

underline ~ :  a, b, .c, .. .  for the constants, ^  tor the undefined 

svmbol, £, Jh, ,k, . . .  foi the functions. 

At this point, we emphasize that the elements in the alphabet are 

just symbols, and do not   have any meanings as variables or functions of 

some sort, in spite of th« way they are called. 

2*2,2    Terms 

way: 

The terms over an alphabet are defined inductively in the following 
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(i)  The individual variables  x^ for  1 < i < n,  are terms. 

iiiN  The constant, s in C are terms, 

i ti   , is a term, 

iv  For tvtry  p  0|  and every 8 G G   if  Tt» T2»»»|TB are 

tirras, then K r« I T
^ , • • • I T )  is a term. 

(v)  It  ',...,-  aru terms,  F(TJ  T !  is a tenn. 

(\i)  There an no uthcr terms than those which can be obtained from 

(1),  ii and  iii by a finite number of applications of (iv) 

and (v . 

For example, if c c C, g, e G,, g, € G^, and n = 1, 

g2(gj_(fvx);,g2(c,^)) is a term. 

Terms are usually denoted by greek letters  3, p,... at *»•« .Sometimes, 

when we wish to emphasise the variables of the alphabet, we denote the terms 

a(F,x;, B'F.lf), etc... . 

For proving properties of terms, we will frequently use what is kncwn 

as the principle of structural induction, which is valid here because of 

the extremal clause  vi .  It is a special case of Noethcrian induction 

rsee Cohn (ri6r))and has been discussed thoroughly in Burstall (I969).  Let 

us briefly recall here sjme of the relevant notations and facts. 

We define an ordering relation between the terms over an alphabet 

in the following obvious way, by first defining the "immediate subterm" 

relation: 

Definition      A  term    a    is an  iianediate  subterm of a  terra    p    if and 

only  if: 

ti)  I " • (fi T    for some  p  C, some  g € Gp  and  or = T, 
~   i     P ~   r 

for some i,  1 ^ i -- p» 

or: (ii)  I • F(T« T |  and  o = -,• for seme i,  1 i i < n. 'in 1 
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Definition Th« "proper subterm" n.'latlon is the transitive ' non reflexive) 

'.losure of tlie "inmiodiate suluemi" relation. 

The "proper subtem" relation is a  strict  ordering relation between 

terms, in which every decreasing chain has a minimal element 'because of 

th« extremal clause . ,2.2 vi ' .  Structural induction is therefore a valid 

principle over th« let Oi terms  structured by th« "proper subterm" re- 

lation, i.e., to prove that a property  I  holds for every teim, it is 

sufficient to shiiw that: 

i   Tor everv i,  1 ••. i ' n, Kx.) • 
i 

i i   For even,'  c c C, '.   c , . 

i ii   '•   %) , 

iv  For every  p  0,  for every p-tuple of terms  ^»•••»t , and 

for everv g C C ,  if  : -.  and I -  and...and : -  , then 
~   P » p 

<c  i    p 

v       For  everv  n-tupK   of   terms     ^»...»T  i     it     KT«       and   I   -   ,   and... 

and     .   - then     1   F'-,, 
n 1 

2 .k .'.  Subst ituti'ii.s 

Substituting a term , for a term p in a term - can yield different re- 

sults according to which and how many occurrences of - in  are substituted 

for. Let sj - denote the se£ »f all possible ermi obtained by replacing 

a by v in -.  By convention, it will contain - itself  corresponding to 

substitution of , for no occurrence )I g in   .  SQ •  can he defined in- 
B 

ductively in an obvioua way: 

a   if  c - - , then  8» t ■ [cttf]', 

b   otherwise  t. * - : 

b-i  -  biii   if - is an individual variable  x , 1 ■ i ■ n 

or if - is a constant in C, or if  - is „,, then: Sy  T ■ U\, 
r 

b-iv   if  T - ^^.....T ),  then | 
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Q       Ä • 1»    ^ n   !   1     Pi       P     0.      P' p  ? p- 

(b-v) if - • F' f. , ■•»■Tn>.  then • 

Remark Such an inductive definition defines uniquely the set  S0* T for 
  B 

any triple of terms y,   p, Tt  as can be shown rigorously by structural in- 

duction on T.  The detailed proof is left to the reader. We will very often 

use similar inductive definitions in the remainder of this work, without proving 

that such definitions irdeed uniquely define what they are supposed to: 

the proof is generally trivial by structural induction. 

2.3 Semantics 

In this section we define the semantics of our system, that is we define 

interpretations of the alphabet am! of the terms. 

2.5.I  Interpretation of an ilphabet 

An interpretation of an alphabet consists of: 

(a) t   non-anpty domain i,   together with a 1-1 mapping of C (the 

set of constants of the alphabet) onto ^.  If &  is a constant 

in C, we dencte its image in i by this mapping by c, and we 

call c the value of jc .  Conversely £ can be thought of as the 

name of c.  The constraint for the mapping to be onto implies 

that 1 C j = I £. I and says that every element of & has a name, 

which will be convenient later. 

fb) An element $    not in & ,  which may be thought of as the 'undefined' 

value ''i.e. the value of the 'undefined symbol' m). 

'c)    A subset D of ^.  'The motivation for introducing D has been given 

in the general discussion, '" 1(3*2)< 

''d)  For every pal and for every g C G , the interpretation ( or value) 
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of g will be a mapping g of a non empty subset of (&   ) , 

called Doml g\ into /\ -/.    These mappings g are actually the 

base functions or given functions) of the Interpretation. We 

refer the reader to the discussion in ' l.;j.LJ. of these base 

functions, and to the definition of the si.quent.ial and parallel 

'if ... then ... else' as examples of such functions. 

Note that an elemer.t of the alphabet is represented by an 

underlined letter, whereas its interpretation is represented by the 

same letter without underline. We will omit the underline whenever no 

confusion can arise.  For example, according to our notations, the correct 

way of writing the t« nn used in the familiar i jcursive definition of the 

factorial over the integers is: 

if x  0 then 1 else x • F(x -I), 

One adequate interpretation is the following: 

fhe domain D is the set of integers, the loraain £ is D IJ fT,F}. 

Thus »5, 0, 1, T are constant symbols, for example, and -J, u, 1, T 

are their values. 

Given Functions Symbols:     Interpretation: 

if ... then ... else ... 
The sequenti.il 'if ... then ... else ...' 

defined in ;' 1. -;.2. 

+ 2 
The equality predicate   over ;D ) . 

+ 2 
The multiplication ' defined over (D )  by: 

V x,)""',,),  x'y  is the usual product of x by y, 

■■■ xru,   x • -j - T " x - a> * a) * « • 

j. p 
the subtraction - defined over (D )  by: 

•Vf x,yeD, x - y is the usual subtraction 

-^Recall that, for any set S, we denote S J fa») ^Y    s 
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of y from x 

Vx€D,u)-x--x-(D=x'-a;-uü 

When we do not wish to emphasize the distinction between syntactic 

terms and their values, we simply write the sav-" term: 

if x s 0 then 1 else x *   F(x - I) 

2.31.2.  Evaluation of terms 

Interprotaticns of the alphabet leave F and the x.'s free.  If we 

supply some "value" to the functional variable F, as a partial function 

over some domain, and some "values" to the individual variables x. 's, 

it becomes possible to evaluate the terms -J   over an alphabet A(F,x). 

More precisely, there are two natural ways of specifying F : 

(a)  One way is to specify F as a partial function of 0° into D (i.e. 

a mapping of D into ') ). 

[h)     The other is to specify F as a partial function of (D )  into 

D (i.e. a mapping of (D )  into D ) 

^7  Here and i:i most places throughout this work, we use the word "term" 
to mean "internreted term", as there is usually no possible confusion. 

See Appendix I for a presentation of the main results regarding 
partial functions.   Here are same definitions and notations that will 
be used throughout this work: 

A partial function of a domain S into a range R is a mapping 
of S  into R .  We denote the set  of such partial functions 

pf fS *R). 

For convenience, we abbreviate  the set of partial functions of 
Dn Into D,  pf(Dn ->D), by pf (D), and the set of partial 
functions of ''D+)n  into I),    n pf(fD+)n -» D), by pf (D ). 
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In both cases, x1 can be specified as an element of 

4 + U (d), where d is an element not In £ and f   ,.,. frfo  meaning of d is 

discussed below.  There are technical reasons, which will be apparent in some 

proofs  later on. why one wants to define the evaluation of terns  for x 's 

+ outside D ), 

Corresponding to these two ways of specifying the variables, 

there are two ways of evaluating a tern, which yield what we call,respectively. 

the weak value and the strong value of the term: 

(•)  the weak value of a term T = T'F.x) for F = f € pf (D) and 

*' ? C   ^    u rd-|)n is an element of A + ,j fd), denoted Tff.f), which is defined 

inductively as follows: 

(i) if T - K1( 7(fA)  ■ -.; 

(11)  if  T "C, where ^ is a constant in C. 

T( f, f)  c ; 

(HI)  if — x. ~ f,c)  , , . 

(Iv)  if  - = g (T-, T, . ..... ) then: 
«-12     P 

- if  the vector  "-r     f,^,,...,~ ftf        does 
I       - p 

nut   belung  to  Dom g     then   T   f,-?    £•  d; 

- othi-rwise,   T   fj gCr^f.f   ....»'T (f.?))j 

v tf t ■ P(T, -   I   then: I n 

- if the vector • '-   f.ö,..., ~ (f,?,  do«« not bclcng to 

I)  " then Tf.T- . d, 

- otherwise, if for some i. 1   i <; n , '-.(f.F,) ■ x, 

then T(f,f) l w ; 

- otherwise v'f.r) - f(r^(f,?),...>7n'f,fj). 

Again, as indicated in  5 2«2«Ui an easy proof by structural 

induction shows that (1) - (v) uniquely define 'T(f,^) for 
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any term f, any  f G pf (D)  and any 5 e(A U {d})"» 

Note that the 'd' symbol that we introduce here corresponds 

to a 'don't care' condition, or, better, an 'error message' 

reported by the evaluation mechanism.  It has a very 

different intuitive meaning from the '(D' symbol which 

corresponds to a loop. 

(b)  The strong value of a term T( F.x"1 for 

F = f G pf D ) and X • f «(^ (J fdl)n is an element 

of t ^ ' [i)t  denoted T(f»f)i which is defined 

inductively as follows: 

(i) - (iv) as in («) ', 

fv) if T " F(T1t«*»»t ) then: 1     n 

- if the vector •-' ^f (f ,P} ,...,^ (f ,f )> does not belong to 

'Ü+ "  then fittt)   ■ d i 

- otherwise, T(if|) ■ f '^ ( f ,£),... .^f f,£)) . 

The only difference between the two evaluations resides in the 

evaluation of tenr  of the form F ~ ,...,T ).  In the weak evaluation, since 

f  is a mapping of D  into n ,  f(f1,...F ) has no obvious meaning if one 

of the  P, 's  is T.  The solution adopted in a-(v) is to arbitrarily set 

Hf w   )   ■ «J whenever one or more of the arguments is $•  In the 
I      n 

strong evaluation such a problem does not arise, since  f  is specified 

as a mapping of  D )n  into D , and therefore  f(» ,..,* )  is known for 

all combinations of undefined arguments.  Paragraph i.''.Lj      will discuss the 

relations between the two kinds of evaluations. 

We will use later the concepts of correct and compatible terms. 

Definition:  A term  T (FIK)  is correct  iff: 

"f I   pfn'D
+),  v ; G 'nV,  T (f»0 € L+  . 
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In other words, the strong values of  - always belong to 

Notice that every subterm of  correct tenn is correct. 

Definition.  A Um T(P.XJ  is compatible  iff; 

In other words the strong values of - always b,! ,ng , .  n". 

2,5»3   Functionals associated with a term. 

Let  -  be a correct tenn, as defined in the previous section. 

Corresponding to the two ways of evaluating  T| there are two functionals 

that can be associated with -: 

a  T: 

Corresponding to the we«k evaluati m we associate a 

functional, denied >, wl.ich maps any partial function 

I r pfn D  into a partial function 7 €]   £   pfn" ...  ^^ 

defined by: 

•• e   r   fr 
■'{,* 

b        ?■ 

Corresponding to the ftrong evaluation wv «sgocUt« 

functional, den.-Led » which maps ps any partial function 

f -   pf  I) 
n 

defined by: 

into a partial function ? Pf ü+(n -. . 

•■; f '. 'D i  : f[t\ = '.? [f,| - ^ 

If, in addi t Ion ,  T i,< ■ compatible, then  T is a functional over 

Pfn'n;,  'i.e. a mapping of pf (D)  int.0  f fD 
PfniD);, and ^ i« a functional 

over pf 'D   ). 
n 

*j   The fact  that    r ; f 1  6  D|  fD
n      ,    „u ^ 

fact  that    -     correct   implies: '' '     ^  correct  comes  from  the 

for  any     f G   pf  ^D),     for any  I t fp   '?(§ »\ .  f 80.5.1.  below.       " ny  ?   .   ü   .   Tff,p)   r   A   ,        and   from  UjIima 
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.  . • .. 'Recui si v.-   uc flail i JUS '   and   t hej r   t Lxpi >i 'Us . 

Wo   call    '; <'vurs; ve   definition1   an   ■•prcssi  <:■   of   t !u    fOTtB 

r  x       -   -   K,x' 

where   -   I,"       Li   my  cmpatible   tens,  at   lefi lad   i I   Paragraph 2.3.2, 

Corresponding  to   the  two  functlonals associated with     T,     one 

can define  two different   classes  of  fixpoints  of a   'recursive 

dclinition'i 

a A  partial   function   t   in     pf   !D)     is  a wr-ak   fixpoint   of 

the 'recursivf  dt-tinition'    P(J)   ■'=  T(F,X       iff  it   is a 

fixpoint  of z,     i -^ c D : t(f) W   • 

/K^ 
.   +, 

A  partial   tunction  1   in pf   [0   )     is a strong  fixpoint   of 
n 

the 'recursivi   definition F x 

4- n 

F,x) iff it is a 

i.e.: V ^ C  i) I ! ■ '^i,sJ . 

The following section discusses in particular relati ms between 

the two kinds of fixpoints. 

2.3,5  Relations betwc »-n thf two types of evaluations and rixpoints. 

let us denote by  f  the natural extension of a partial  function 

f C pf  U,), i.e. f  is defined by: 

V f C Dn :  f+T; ■ f(? 

( V?c'D+^n\ D)n:f
4 ?)   = 

Then we have : 
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2.Ji.^.l   l.emma:     For   overy  partial   function   t   £   pf   fß]        for  evorv 

n 

| € 0  |     foi   «.'Very   term     -   K,x     : 

Proof:     By  structural   induction  on   - 

-  c, 
ft -V, 

[ i)  "     i i i '     '   -  x . ,   ••   -  c ,     T = x  :    ^ r 'v ia ^ • 

g  T|»«»»t1l  •  By induction hypothesis, thr- vectors 

'l 
f* ' t ,* ': T     1 ,F and 
l        • P 

1   .B1
   ,...,'*■    i    ,T       are  equal. 

+ 
Hence   if   they  do  not  belong  to  Dom  g    ,     ^   f,*')        "   f   ,F)   = d, 

and   if  they  do: 

1 ltf    - | \   fj    T    f J 
1 

+ _ 
» tCT|(f   ,fj,...,,f (f   ,| 

Again by induction hypothesis, the vectors 

=   F 

'1   '^   ••■"     p   '^ antl "l 
+  — ,^       ♦   _ 

are   equal.      !f   they   do   not   belong   to     !)     n,   then 

T(f,f) »^(f*.!     d. 

If they do, then two cases arise: 

1   Pot some i, 1 - i .. n,  ». f.F g '-. f ,7, ■ „, . 

Then: 

•3?  f4   -     ■    ,+ *•*     ( *   ■»                •»/**"• ,   ^.    .    . 1   >"                    1         "'    '•••'   '      '    »'  ' definition 

9) definition 

' r-T( t,? . definition 

Of    T 

Of       f 

of ; 

ki 



~  + _ 
Fot  overs i , 1 <. i -. n , ^.vttl,]   ' [   i   >'     F » • 

!hen  T, Iffl   T  f.?)   ^ i)  ani1 we 1,nVt-' 0 1 

,+ _ 

■ f  T.C«,?)  -n
;f'T^ 

r f,?) 

dcfinitiün of > 

+ 
definition of f 

induction hypothesis 

definition nf > 

However there is in general BO 'nttresting relation between the 

fixpoints of "* and the fixpointb of - as we shn^ bc-l^w. 

2.* . 5 .2    A recursive definition' can have- a w.-ak f ixp 'int and no s'- rang 

fixpoint . 

Hxample:  i.L.t us take, F «]  = T F,x  wh. re T'F.X) " |(7(M))< 

Interpretation:  D • A " [integers] 

ri(r) a Ä if f € 0 

Now  f €     pf U   ,   defined by:     •'  f c  U.f1?;  ■   1,   is a   fixpolnt 

of "f,   hence a weak   fixpolnt   '>f  the   'recursive d.-f inition'. 

However,   this 'recursive  definition las  no strong   iixpoint,   for 

suppose    rj C   pf'D   |        is   such a   fixpoim.     Then: 

v  ?  €   D        -' >     ■     T(«P»?) 

=  g   •(«))  • 

Hence,  we have:     ex,   - g  cf^U)/)« 

Now   if 9(9)  = gg    wi-  get ^(n)  ■ g(u)) 

if ffim)  £ ■    »»«  get (j/mj   ■ H 

definition  of a  strong  fixpolnt 

II 2.3-2   (b) 

contradiction : 

contradiction . 
C3 
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2.3»5•3 Conversely, a recursive definition can have a strong flxpotnt 

and no weak lixpoint. 

Kxaraple;  Let us lonsidet  P(x)  = T K,x ' , where: 

"i r.x - h   P(j^,F{x)) . 

Interprc'tati.)ii:  D ■ ^ ■ fnon negative integers!.  Let Dom'h ^ = D+ x D^, 

h(Vi«) ■ o 

b(«tS) mm t£ f c D 

h e,T ) a 0 otherwise. 

Then, c r pf D )   defined by: \' * r   I) ,   vi*) =  0  is 

a fixpoint of Y  , since: 

+ ~ 
M P r D : ~ -. c Hyim), wit)) 

h'O.O) 

= 0 

? 2.3.2 ^b) 

definition of ^ 

definition of h 

definition of n . 

However, this 'recursive definition1 has no weak fixpoint for 

suppose  I C pfld;  is such a fixpoint. Then: 

V if € D, |(;) fl h(»tf(?)) 
?  2.5.2 (a) . 

■ if |(f)  JU.  then sa hi'a,x ? C :contradiction ; 

- if  1(5) r i)  then  |(f) = x     : contradiction . 

D 

2 .5 . > .i.  Finally, a 'recursive definition' can have a weak fixpoint 

and a strong fixpoint which agree nowhere on D. although 

they are both completely defined on D. 

Kx:  L^t us consider the 'recursive definitiori F(x) <= T(F,X), 

where T'F.X; = k'F'uj)), with the following interpretation: 

D = ^ = [integers}.  Let Dom(k) - D , 

li2 



k » 11     ltD 
k ■ 

1   . 

N.'w  thf   only   lixpoint   of   -   is     rI        pi   D      dc-tincd   hj 

'    f £  D, 1   , 

aiu! the only fixpolnt  of ^ is     fa c pi  D        define d  bv 

•■•  -   -   ' 

■ 

rims, evwi though the deflnitiona of '• tnd ¥ appear co bt quit« 

similar, the fuiu i iuu.. 1 s T and ^ lOBttÜMI behave quite differently. 

In  the   next   lection we  define   the  c imputations   oi   a 'recursive 

definition'. 

2 ••♦     Ccinputat ions 

Computations     of    'recursive  definitions' have  been  discussed   in  §   1.1+.2, 

We will |ivc her« a mt1ri   form] Bodcli 

2th A    Notat ions . 

We   first  need  to define   the  notation    a K.s    when   "F is a  short 

notation   lor an   -t.ple     f tenM ^»Ife»«-.^     •     Im-rmally, 

&  F,B;     is   the   tem   obtained   by   substituting    x.     by     g.     far  all 

occurrences   of  ^     Ln     v  ' .x   ,      for  every  i,   1   •    i * n. 

Formally,     a(F,f       can  be   defined   by   structural   induction   in  the 

obvious way: 

'L       if    ff " X,i     1   ^  i   r n,     then;   > F.Ä]   =   a. 

ii)     if    v -^  a       C     i.e.   constant   t 

iii,      tf    Of ■   g,      then ; r/ ptf)   =  «,    ; 

iv       if     Of " 1 o, ,->,,... ,->   i,  with g c  G   ,   then 
" P ~        P 

offf'ifi    ' l(ar1(F(f),..., QL{F,1)) ; ^^i p 

^5 

erm   ,   then:  of(F»^)   ■ a   ; 



(v)     If a ■ ¥ia  .cc, a  ),   then! 
id n 

rrF.p)   =  Fla^F.p) f^(F,B)). 

A  frequent  case  is when     p    is an n-tuple  of constants,   i.e. 

Pi  = ti'      with ci c  D  •   for every i,   1 •: i ^ n. 

In this case, we denote c  =    c,^    c      ■   and a(F,c)   is defined as 

above with c =  p. 

2.4.2. Computations of rv'F.x^ for x = c 

Definition: An elementary computation of a term cy(F,x) over some 

interpreted alphabet, for x = c c (D ) , using a'recursive definition' 

Ffx) <= -r'F^), is a sequence of terms \oi  ,   i ;> Ol  such that: 

(a  a - (>(F,c) as defined in ,J.l4.1. 

(b^  For every  i ^ 0, 

9 - */ - either bO:  ^   G S  9., where p is free of x, 

and the equation: 

f(fi \ \   v'f, ) holds for every f € pf (D+) , 

■ 
♦/ The notation  s rt    has been defined in  ? 2.2.4, and the notation 

T(F,B) in  «2.4.1. 

A term  | is said to be free of x  if it contains no instances of x , 

for any  j, 1 5 j ^n. Therefore, if y is a subterm of y.,   it is obviously 

free of x. 

If a term  e is free of x, ^(f.F)  does not depend on },  and we denote 

it by %tt   ); similarly ^ ff(r) does not depend on 7, and we denote it by 

Kf, ). 
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F,"' 

or  b,  ;  m     C S 

Delinitiun:  A computation of a term v(Ptx) over some 

interpreted alphabet,  for x = c C DV, using aVecursivc- 

definition' f{i)   <*  . K,x;, is any  sequence of terns {». | i s 0} 

which  is a subsequence -^   ol an c-lementary computation 

rfij I j :■ 01  of a;F,x),  for x = c  using the same'recursive 

definition,  and such that  « • ft . 
o   o 

2,Ji''  TerminatinK computations. 

Let  o F,x..  be a term over icm  interpreted alphabet and  a e 

be a constart. A computation f^  i   >   A  of      tm mm«j m '>i . i .- j oi a is said to terminate 

wlth_a. U there ., s.mc     n, n ;-    such that  ^ . ..  A computation 

f^. 1 » 0)  of , U said t0 terminate if there is an a e A such that 

the computati ,n term^.tes with a.   Hot.  that a I. ^bidden to be ,), 

A 

J     By that, we mean that there is a mapping  s of the nonnegative integers 
into the nonnesative integers such that: 

fa)     for all I * 0 i    - - f, s'i)   "i • 

(b)     for .-ill i, j ? c ; i  • j =, s'i)   i(|) . 

The purpose of introducing these subsequences is to allow one to "skip steps" 
during a computation, or replace some tent,  - by b  if a computation of  o 
ill known to terminate with    b,  for example from previous computations. 
Terminating compntatims are defined in  J 2,k,},\ 

15 



CüPBients:  Notice that according to our definition, a computation can 

"termina'V and be infinite at the same time.  (In fact, 

technically, all computations are infinite).  The point is 

that, for terminating computations, only a finite initial 

subs qucnce is considered significant. 

2 ,k J-t  Computed functions . 

As emphasized in Chapter 1 there arc usually many possible compu- 

tations for a term.  Computed functions of a 'recursive definition' are 

defined by considering all possible computations of F(x) for x ranging 

through D or D I .  Let x be fixed to some c in Dn or ^D+)n.  Then 

it is possible to associate values to every computation of F(x) for 

x being T:     If the computation does not terminate, then the associated 

value is x.  If the cjnputation terminates with a € C, then an associated 

value is a.  Note that, so far, there might be several values associated 

to a given computation1. A computed function is defined as being 

any partial function in  pf^D) or  pf,. ./j) mapping c (in r" or 

Ü ) ) into a vaLie associated with -one computation of F(^) for 

x = c 

Another,  equivalent,  way  of stating this  is: 

Definition:     A  partial   function  f €    pf  (D+)  [reap e     pf  (D)] 

is  said  to be a computed   function of aVecurslve 

k6 



■•^«-^■•"•■"«F- 

1   ii n      .      .      . dellnltion  over    D      [ resp over D      tz  it Is  iucti 

t hat ,   for every  c i.   ' 1)   i      reap   G D    : 

i       i]   ;     r    /  j   then  there  ts a computation  '>! 

\        for x  :   i.- using the recursive definition 

which   ; i rrn i rates  with   f (F) • 

ii      ill;"     - u   then there la a computAtion oi 

F  ■     Jor K - c using LIK' recursive definition 

which does not  terminate« 

Notier   that ,   becaus«   of  the way we  liavo  defined  substitutions  any 

noiuconstant   term -, has non-terminating computations:    a trivial example is 

the seauence    '• ,   \   \        1    defined bv    -,.   - a     for .-ill    i      0| whi^h 1 i - "10 

is  a   non   terminating  computati >n     Phi I   La  because,   jfor any   triplet 

of  terms    ■>,   n»   ' :     ' ''   '^'>~     From . .. .■    .     L. msequenf L' ,   Cur any 

specification of x,  F '-.    has non-terminating campu:«lions. 

Hence  il   f  ami g are two partial   functions  such • iat     i   •   g, 

and  if g  La a comput 'ii   fund ion,   f   La also a computed   function. 

c'.■'•.',      Lniu'rmost   t nrip.u at i ons . 

He define   Lmurmost   computation!   as comput, ..ion.--   in which    b2; 

of 2tht2   it  onlv  applied when     g    is  ar  r-tuple  of  individual  constants 

in   C«      In   othei   words,   the,   an    those  ■ f>i! pi^a t ions   in which  only 

call  by value    is permitted. 

in  tiie  coi.r'e  i f  Chapter     ,  we will  d' fine  other  typ<.s  of 

romputations,   as   needed. 
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CHAPTER 3 

RELATIONS lETWREN rxiMPlTED FUNCTIONS AND F1XPUINTS 

Jj.l Introduction 

5.2 Computed Functions «id Strong Fixpoints 

'.'•l Fir,-,t Substitution Lenni for Strong Values 

3.2,2  Second Substitution Lemma for Strong Values 

3.2 .3  Th.-oiem 1 

5»3 Innermost Computed tunctions and Weak Fixpoints 

3»3»1 Fir.-t Substitution Lenma for Weak Values 

'5'^'''    Second Substit .it i'ui Lifima for Weak Values 



3.1 Introduction 

In this chapter, we essentially present detailed and complete 

proofs oi Theoroms 1 ami  discussed in Section l.r, of Chapter 1.  It 

should be emphasizeo that there ar  IO restrictions un the 'recursive 

deiinition^ to which these theon    pply • (For example, the base lunctions 

ot the "recursive delinition do not have to be monotonic.) They might 

not even be computable, and the n suits would still hold. 

The proofs ol ilu oruras 1 and   are very similar:  We prove three 

Lemmas in Section  .  irom which Theorem 1 follows easily.  Then we pro- 

ceed in an analogous lash ion lor Theorem .' , in Section JO« 

3.2 Computed Functions and Strong Kixpoints 

In this section we first give two lemmas which essentially express 

semantic) stabili:;. properties oi the strong value of a term when 

certain  syntactic  .substitutions * are performed in this term.  We will 

use them to prove Theorem 1 in the last paragraph of this section. 

' . .1  First Substitution Lemma for Strong Values 

For every triplet ol terms l,   g, T, for every f e pf (D+), for 

every f e(AAJ{dj) , if u'f,!,   a  <p   l ,§, , then for every oeS ' 1  the 
P 

identity a f,^, - i'f,f} holds • 

Comment:  Informally, this says that substituting one term for another 

within a third one  no matter how many occurrences are substituted 

for) does not alter the strong value of the latter 

term il the strong values of the two former ones are the same. 

Front :  I.et  /  be nn arbitrary element ol pf  D"*") ,  5  an arbitrary n-tuple 

in 'u'H-H.d"1; , and t,   js  be two arbitrary terms such that 

— Substitutions within terms have been formally defined in paragraph 'P. ,2 ,k 
Chapter 

1^9 



5  f,e)   Bp   1 ,T  .     We  show  that.,   for    fvery  T and  every rj 

0 
in ST  the Identity  ^'f,?) ■ r(f»F)  holds.  This is equi- 

valent to the stated Lemma. 

We lirst SIMW is a separate ease that this identity holds for 

" = p.  Then, using N'rutLural induction,we show it for every  T« 

Case 1 : ^_ __£ 

Then, by 2.J .1«  a), S^ ' fa'T^ 

Therefor«! either , = T in which case the result is trivial, or 

a ~  u    in which case: 

Sff.T)    -     y(f.f) 

B(f,T)    Hypothesis of the Lemma 

-' f,?)    Hypothesis of Case 1. 

Case _:  T # J 

We now use structmal induction  on T to show that for every term 

T«  T ^ F implies fit the property holds. 

(i J,  ii ' , and  i ii ,  ')   i s an individual variable x.,  1 S i <; n, 

or il - is x, or if - is an individual constant in C, then s ^T = J--! 

from the definition in 2,2^k     h). 

Hence,  a ^ "• and the property is trivially true. 

'.iy)     T is of the fnrm g '-,, Tft»»««»t )•  Let a CS^*-- 
^    i p g 

Because ~ f a,   case b-iv of the definition of substitutions in Section 

2.2.' applies, and w( have: 

0 ■ 1(0,»r ,•••,    where, for every i, 1   i - p, c.c S^T . 
~ 1        p ~  -    1   0, i 

Now, for every i, !   i   p, we have: 
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either because o! Case I if  .. .-. g, or because üf ^   induction 

hypothesis oLhcrwiso. 

Hence, we n.ust have a   f.f) = T(f^ because of the definition of 

the strong values. Section g.J.fi case b-iv. 

v   r - F(T ,T0,....T ). 

In  a   similar  wav,   Let   at  S^T.     We  have    V.: ,.f   b-v) : 

'  '•'  01,a   .•••.■n1  Where,   tor  every  i,     I < i < a,  at  s(^.. 

Again,   for  every   t,     1 < i   <  n.     W(.  havc     ^(f^j   , ^f^^   and i 

by     .;•.     b-v.   this   implies     :   (,f)   a T(f,?) 

□ 

' • ■   Second Substitution Lemma for Strong Values 

LL't    x'r'  T
B)  

be an arbitrary n-tuple ot terms and a 

• any Lern.  Then, -or .very  1, pln D^ . and for every fe (^{4})*, h 

we have; 

' F^    f.f) = Hi,    T^f.f) :
n,f.r;  >).^ 

Commeiu:  Inlormally. this property means that one can equivalent ly : 

a  First subtitute  T. for x everywhere in a, 

and then compute the strong value of the resulting term for 

f  and I , 

{b)     First compute the strong value of each T for f and F, «nd 

then compute the strong valut of a  for f and the vector 

ot values ul  T.  just computed. 

or 

Hie    lotation      »(?.▼)   h^  been   lormally  defined   in  Paragraph     .1+. 1 
HF,";   IS   the   term obtaine 1   by   substituting    x.     by     T       for   all 

uccurrences  ot     x.      in   i fUI   W9ry  i)   i  <  i1.;  a)        i 
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Proof     Th«   proof   La   Lengthy,   but   easy   by   struct'iral   induction  on     *. 

Let  us   U ii" i.   t he vect i t yAt,f),...A     tj))     by r, I        • n        - 

ty(F,T       f ,5)     by   1 .h.s..  and 

?      t ,») r   (f ,F)>1 ■ '1 ,t;   by   r .!!.■ I   1 

Casv      i 

h    1 

r . n . s 

for   ■ i'.u   i .   i   ■    i       n. 

.    by    .   . 1   ' i   , ends    l.h.i    »^(f»i   ; 

,{),    by    .3.2 (b-i), so l.h.i       r.h.s 

Case     : 1 j     -,   ■ C,   for   some     C   in  C. 

Then    Q   F,f t     by  ...i.l   (li)   and:     l.h.s      ;  c    by  L. ■) .2   (b-iij   ,* 

r.h.s      ^  0 ) .11 >- 1 bv  .''.3..'   (b-ii ,J,   so  1.i!. s     =  r .h.s   . 

Case     Hi      cc   -   ^. 

In  this  c isi ,     l.h..    "  r.h.s   - g    bv an argument  similar  to 

case     li)• 

Case      iv.      a  "   i    t > /   y ' < • ir 

1". P 

Wc  have   -.   ' ,- 

and   so   l.h.s   ■   ,   1',-     [f»¥) 

I   fj ;F,T),...,op P»T)), by . ... .1-iv. 

/-     1 p 

Let us  denote,   for  every   i,   '   _   i  _   P.      iA^*W)   {t»%]     ^y    a^. 

Then,   by 2.}.       b-iv   ,   if   the   vector     ^.a a  N     does  not 

belong  to  the  domain    -f   •,     l.h.«       d.      If   it   does,   l.h.s   s 

«'a!^.'"1-, a
r   • 

On   the   other  hand     r.h.s       '/' i,T 



Now,   by   induction hypothesis,   for every   i,     1  v i _ p,  we have 

T^f.O   ■ cv.'F.-i     f,f)   ---a,     as  defined above. 

Hence,   by  , ...      b-lv).   if   the  v.ctor     /a,.a   . . . . .ap)   Joes  not   belong 

to  th«  Jomain  of  K>   r.h.s       d.      If   it   dot.s>   r-|ijS   _     { ^   ^ 

So in botfa casea  r.h.s      1 .h.s. 

Ccte     v ^     r,   -   F i 
i II 

Tlw proof is vrrx similar to the previous case. We have 

0 K,T! = ' '1 r^ <■■■>'.ny.~) by 2A.I-V, and so 

1.h.s  Q K,r  i • 

i ■»n »••-^n ftT>J (f ,T; P '1 F'" •••»«^(F^ 

Let us again denote  ^(P,?)  f.T,  by a.,  i or overy t  1 . i _ n , 

By 2.3.2  b-v., if the vector  'a1 ,a^, . . . ,a^  does not belong to ^V, 

then l.h.s  d.  if it do«S|  l.h.s ■ f(«|t«_ a  . 
lt.      n 

On  the   other  hand,     r.h.s  ■ ^'ftt) 

~   f\0l* »'>     r/   )      f ,T   . J     • n ' 

Now, by induct on l.ypothesis, for every i,  I < i < n,  we have 

^(f.T) —/.F.T) 'f.r   a.  as defined above. 

Hence, by 2.5.2 (b-v , if the vector ( 

to D ) , then r.h.s  d 

If it does, r.h.s   f a. ,a ,.,,.« ). 
I        n 

Again, in both tases, r.h.s   l.h.s. 

a^.a ,.. . ,a  does not belong 
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' •   • '      Theorem   1 

He noK prove   ,' v i <.'ni I wliich waa  stated  Ln Sect! m  I .' . 

We need out  prelinlnary    ensna: 

l.i'tTBna:    Let      •' i , ■:      be  B corr«-.^'   torm over  -in Interpreted alphabet., 

c    be aa c'emeiit   oi      f»"1  '     a:;      F(x)    <■    T(F»JT     be ■ recursivi   definition. 

Let    [o^11 _'    '     u    •• arbltrerv  coa^utation o!     i    for     - ■  c   using the 

recursive definition.      lien,   fi r every   fiicpoint    ■:    oi    - ,  ~    and   for all 

i~>   , .     i: '■-   c^ i     CD. 
1.        • . •* ' :     '♦', 

ProoJ :     First   remaik   that   it   is  sufficient   to   show  tht   property   for 

elementary comput.atii'ns    ^defined   In  Section     .•..)•   since   the   general 

computations   are   subsequences  of  elementary  ones. 

Let     •;      bt    a    I i xpoj i'l    ol 

We begin by •howin) that, for every  i    , 11  ■. [t ,   ft  t.   ,   then 

*i   '•.     'i4l  '-  ' 

Because oi tht openin) remark) we only h.ive to consider two cases: 

Case a   ;, . t .i  . , 
 —-  i + l     i 

where ft V f c Pi  •'' . - ; . ,     l , , . 

In this case, a direct application oi   Lemma 5« •! prove-, the property. 

- K $] 
Case V  ». . f,S,. , -, 

In tliis east, we  first observe that,   if    F'B,   li not present in 

.■., then   ■,   ,       ■•,    and the property is trivia!,    ii   It   ^s present  In O., 
i       i+l    i i 

then the hypothesis  ■. , ,   ^. .,*" .mpl its thati : i i i very  j,  1   ! < n, 

T, functional associated with -, hap been del ned Ln . • b 
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SjOp. ] e I)+.  ! Otherwise Uiv suhterm F(f) would evaluate to 'd', and 

hence so would t.     ay can hv   seen easily 1 rom th« definitions in 2,3,2 b]. 

There tore, we have: 

• ■  M«  K** 
.ln(«pl )) 

: I.enmia   J.   ,2 

'X  is  I   i ixpoint  of  -^ 

.;■.      I)-V 

. ]   pinves   the   property. 

■   ©  r, 'cp.   ) , 

1   -      «P.  , 

And   again,   an   lOMdlate   application  ol   Lemma 

Now  a  trivial   taatheSMtical   induction on     i     proves   the   I.enma,   since 

'T    '5• 'T,^,,   and hai   boon   asswed  correct,   which   implies     u((p,?)e ^+ 

We   can   no«   stati    and   prove   Mu-orein   1: 

Theorer:   j :     For   every 'recursive  definition'   every   strong   fixpoint 

is     an txtantlon  - ol   every  computed   function  over     (D+)a. 

PTJ.KM:     l.i't      i   x       <■    T   F,x     bt   a   recursive  delinition'   let     f  be 

one   ot   its   computed   tumtions  over     l)f  "     and   let     x     be  a   lixpoint   of?. 

Lt't     I   «    .D^.        b,-■   •«eh   that      t '*     fl H,     Thus,   from the  definition of 

a  computed   function,   w.-   know  that   there   is a computation    { '.|i  > Ol     such 

that      ;    ■ F(| and     L    •  f(fl   for   some  finite  k. 

Now,   by  tl>e   previous  Lemma,   we  know  that,   lor  every     i     ■ 0 

'i "' ■ " 'l'-'i'!i        " I' ■ 

Hut since Qt = f (f) , In particular, we get that  ■■    -, ) ■ (p(l 

we see that  f F   »(f), whith is what we wanted. 

If  f,g  are partial functions of  |  Into R,  |  is an extension 

Ol      I  iff:  ,' x . S, f 1 x) - |(x).  See Appendix I. 



' 

Some  consequences ol this Theorem havo been stated and discussed In 

Section 1/ , and we will not ^o  over then, aj-ain hero.  They al] follow 

iranediately from t!ie Theort-in, 

'•3  Inneniiost Computt-d Functions and Weak 1 ixpoints 

In this section we derive the analogous of Lemma '. .1 and 5.2.2 for 

weak values, and then we prove Iheorem &. 

5.5.1  First Substitution Lcmm.i for Weak Values 

For every triplet ot terms  ,. «, T|  ]or everv  ,  f (D)  f 

^very f « A^j {d))n. il  '^ t T) ^ B t .f, , then for everv ^ € S'^ . the 
-w H 

identity - l ,f   T(1 ,"-  holds. 

Prooi:  The proof ol Lemma -. .1 carries over completely by simply 

changing  V hv  -.  • ... ^   ■ by . ... ^^ ./. hy ^  an^Btrong. hy   ^^ 

J.J.t  Second Substitution Lenmu for Weak Valu^« 

Tl,T, .....'n- be an arbitrary n-tuple of terms, and 

0 be anv term.  Then for every  f , ^,^(1,)  and for every r , fA^(dJ)
n. 

we have: 

a(F,T) [ttl)   ■ ;f. ■- ;f,f\..., T (f.f) >). 
i n 

Proof:  The proof is by induction on  I and parallels that of 

Lemma -.; .7.  Let us again abbreviate the left hand side and the right 

hand side of the identity which we want to prove by l.h.s. and r.h.s. 

respectively.  Cases (i)   through '» translate directly and we von't 

repeat the derivations here. 

Case fv) •• ' ■ r(aj ,a  cr ) 

We have  'F,"1 = F'/ V  7, (v  ~\\ u 1 1 • ;   r '] ' 'T>i •••.rynlF,TJj    by  J>.l-v, 
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and so: 

l.h.s ■ a(¥.7)   {{£ 

■ r(a,Cr,T).T7.la (pj)) (f.r) . 

Let us denote a (F,f) (f,f)  by a , for every i,  1 < i L n. 

By Induction hypothesis, we also have i  [f,t^   = a .  Three subcases 

arise 

i ^ a ,a, , . . . ,a \     does not belong to D ) . 

lave 

Then,   by .  .; ..    a-v   ,   l.h.s.   =  d. 

On   the other  hand,        r.h.s.   ■ CX(f(?) 

i  F(a1)a: .../.a^)   (f.t) 

■   d,   by :  .^.2(b-v;   • 

v- 'ii ; :     For  some  i ,   1   ^ i  ;_ n,   a        uu • 

Then,  by2.j;..   'a-v   ,   l.h.s.       u;. 

On  the  other  hand,       r.h.s.   I  ■  by ? .J,.2{a-v) - 

v- 'iii'. :     Otherwise,     ''a   ,a    a  )   c D"    and we hi 

l.h.s.   :    f(a ^a,...^  }   by ; 0.2(4»-v) 

r.h.s.        f^a. ,a   , . . . ,a  )   by ;'.j .2(a-v) . n 

5»3»3    Theorem . 

In this section, we prove Theorem 2, which was stated in Section 

lo.  We need the analogous of the i.emnia in §3.2.3. 

Leinna: 

Let u(F,x; be a term over an interpreted alphabet, c be an element 

of D and F(x)  '= T'F.X) be a recursive definition.  Let [cc.\i > 0] 

be an arbitrary Innermost computation of a for x = c  using the 

recursive definition.  Then for every fixpoint cp of T, and for every 

i > OJ 

3(q».c) - ~. 'rp, ) 
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Prooi :     A^ain  Chi   proof   closely  parallels  that  of  Leima     .'a.';. 

Not it ••   tliat   we   do  not   need   Ch«   correct noss   01      a   hert-.     The   same   opening 

rvmark   applies,   thet    is,   it    is   sutlicient   to   sho«   the   property   for  elementary 

innermost   coaputetions. 

Lei     9     be   a   fixpoitlt   ol     T,     Again,  wc   tirst   show   that,    lor   every 

i>o. v^. )—1+1 :»■ )' 
Only   two  casi-s   arise: 

Case   [el :      K...«   SP;.,   where: 
 '—*" 1+1       VI 

v i i pfjD4 , T,i. ; = 7't. ). 

In particular, taking  f - ;;+  (%rher« ^+ is the natural extension ol 

V, defined in Paragraph  .■'.' ;, we have: 

Now, using Lemma  .-, .1, wt get that: 

Ifa   - vC« ^ 
».♦■>,    I r > , . 

and   using   I.ennia   ■.■'.1,   we   obtain   Ch«   desired   result^ 

Case   .b.: 

'i+l   '   5F(E)      r>i 

where  b  is an n-tuple of constants  b.  in C, 

-"  Note that, in fact we could use a weaker condition to define "innermost 
computations over  Dn", by only requiring that the weak values of 

p  and  .  be equal in  ... [hi), instead ol the strong values.  The 
resulting Theorem  would be slightly itroflger, since it would apply to 
a slightly larger class ol computed functions, but on the other band it 
seems reasonable to consider only those "innermost cemputations" that 
are also "computations". 
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We   have: 

■'1,1'       tp, *(v*i        ^ | (9.   " . • ■ •-^     V'   ). I.emma     ./.,, 

!,
r

h   b
n )      •:'•    a-11 

1   t(<p,b^ Lemma     -SSI 

- cp vb, fX   f ixpciinL   ol ':: 

■ r(g   9. ; 

Now, using Lemma ; . ■'. 1 , we obtain the desired property. 

The Lemma follows by a trivial mathematical induction. — 

Theorem   is now ea-i'y derived: 

Theorem  : 

1 1 

For  every  recursive  detinition,   every   weak   fixpoint   is  an 

extension ol   every   innermost   compu'ed   function  over   D   . 

.;'roo f:     The   prool   is   entirt   y  analogous   to  that   of  Theorem   1, 

replacing     '=,-'     by     '~' , 'st ro:ig'bv'weak',    'Lemma J.P.j'  by   'Lenma 5.3.5', 

and   'computc't ion'   by   'innermost   c<ÄBputat ion ' .     [Actually,   we  do   not  even 

have   to  use   the   ;ace   that    ' •;.f     I   L+,     liact   the  hypothesis   of  Lemma   '.5.5 

is   slightly weaker   than  that   of  Lemma   '..   .;'] . 

a 

The consequences of Theorem  , and ol c« .;bining Theorem 1 and 2 have 

been mentioned in Chapter 1 and we will not rep< at them here, since the 

proofs follow trivially tttm  the theorems. 
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-, . 1  Introduction 

In tht orcvioua chapters we have shown that the computed functions of 

recursive definitions were 'less than or equal to' the fixpoints of the 

recursive definitions, In th« extension ordering, in a sense that has been 

made precise . 

There are evidently situations where computed functions are strictly 

less defined than the fixpoints.  a trivial illustration of this is provided 

by our previously made remark that the totally undefined function is a 

computed function of all but the constant recursive definitions. 

Of course, what we are interested in is to compute least fixpoints 

we know that the others cannot be computed functions).  This is obviously not 

always possible, because some recursive definitions do not have least fixpoints, 

as has been shown in Chapter 1,  Section 1.6). 

In this chapter, we give sufficient conditions on the recursive 

definitions which guarantee that they have least fiv.points of both types 

weak and strong , and we give a characterization of these 

fixpoints . 

Monotonicity.  Continuity. 

1+ .2.1  General Definitions 

Let A,B be two partially order d sets, and let us denote by 

4    the orderings on these sets.  A mapping m of A into  B is monotonic 

iff it preserves the orderings, i.e., iff: 

Va,b e A,  a < b •> m^a) < m(b;. 

Let A be a partially ordered set. A chain in A is a subset 

of A on which the ordering is total.  A is ■ hain-closed if every chain 
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in A has a least upper bound J^  in A. 

Let  A  and  B  be chain closed.  A mapping m  ot  A  ;ntü  B  is 

continuous  Iff, lor every chain K  in A, 

m(lub(K)) = Lub(m(K)), 

where this equation is intended to mean that a(K) must have a least upper 

bound in  B, and that it must be equal to m(lub Kj).^ 

Notice that continuity = • monotonicity :  Let m be a continuous 

mapping of A into  3, and let  a,b i A, with a <   b. To show that 

m('a) < m'b)  observe that  [a.b]  is a chain in A, whose  lub  is b. 

By continuity,  (ma),in b)]  must have m b)  as a lub  in  B.  This implies 

m{a) < m'b). 

The converse is not true in general, and we shall see examples of 

that in the sequel . 

Finally, let  A h a partially ordered set.  An element uu in A 

is said to be a least clement of A if Va e A, uu •> a. 

Let us now use the previous definitions in the context of partial 

functions and funct Lon.ils . 

1+ .2 .2  Monotonie and Continuous Partial Functiuns 

We have seen various kinds of partial functions in the previous 

chapters: 

Partial Functiuns of D  into D     62.3«2faM 
'    w I  Function 

Partial Functions ot 'I)+)n into Ü     |2.3'2(b)j  Variables 

*/   The notion of least upper bound of a subset of a partially ordered set 
is defined in Appendix I. 

**/ If  S = A and m  is a mapping of A into  H,  the notation m(S) 
represents the set  fm's) j s e S]. 
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Partial   iuiutions   of  1)     into  ^ 

Partial   Functlotlf  of     D   )     into  ^ 

Partial  luiictioas oi   .1 Subset  of 

+ P ;.        mto A 

b; 

läse Junctions 

All these can be considered as mappings of .1 set A  into a set  B 

where  A and  H  are subsets ol   ,:.4    for some  p 1.  We will define 

an ordering on such subsets in the following way  see Scott 'I »   l)); 

First define an ordering  denoted v" on t+    by: 

Vs ? 1 , x •- n  and  x ^ >.. 

Then extend this ordering to  ;.+ P.  for any  p i, by: 

Vx,y t(L*     ■     ~ *-   7    iit     :  l-   y,  and  :. < y ) and and 

xv 
P  ■ P' 

Finally also denote »  the restriction ol this ordering to any 

subset ol   i+  . 

Now the general delinition oi nonotonicity given in ... ,1 carries 

over immediately tu the various kinds of partial functions. 

i-irst remark that  t ( pf  1)  and  T| 1  e pf I)11 . ^  are always 

monotonic :  since  D does not contain x, the ordering on  I)11  is such 

that  X < y ■   xv. 

The".:      t   c   pf     I)4     is monotonic   iff: 
n 

'. :■:,>'   s      >*      ,        x  *   v     =. •     f   x f'y    . 

~   i     t-:  pi    (D  )     -»A)   is     monotonic   ilt: 

Vx,y   tiD*) , X < y    ■>    T[ f j 'x;   <   ■'■: f] Cy'; . 
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g i pi Dom g  'L       is BOnotontc ill: 

VxJ s Dom K , x < y ■> g(x; <  8(7) • 

Note that. F« these partial functions, numotonicitY impiüv. continuity 

The key tact is that, in this case.  A only has finite chailU.   Ln VA
+1 , 

the longest chain has  k+1  elements .  Then, let! 

K = x ^ x1 < ... < x , where P _: k, be 

a chain in  A.  and  i  be a monotonic mapping ol  A  into  B. 

We have i   Lub(K)) ■ f(Xp) . 

But  f(K) - IfCxQ),^) f(xp)}. and, by n-onotonicity 

f x ; . i   ^ ) <...< f(x ;•  Hence lub,.f(K)j = £(xp) ■ f(lull(K)). 

Let us no. m«ke torn« more remarks on monotonic partial functions, 

especially on the given lunctions.  (Hi. others are special cases of those, 

anyway;. 

As noted in Sccti-r 1  . Chapter 1, anv g  such that: 

Vx , Don g  [(31, 1 _ i . n  fxi = «)  -> »00  »1 

is monotonic. because .n thi^ case X<y and X ^ y -> 8(i)  »• 

So any function  g  ..lose values are known lor defined arguments 

can be extended on undefiß« arguments in such a way that Lt becomes 

monotonic.  The easi- s, way of doing it is by netting g x; . . whenever 

at least one of the  x,'s  is « , which make,  g monotonic as noted above, 

This is called the n-.mr.il extension of  g. 

This is not the only way.  For example, U  g  is a constant function 

whose domain is f       i-.. V x .^,  g x,   a, with ae:;, then 

, + n  ,    u -  ,',+ n  o'x   a is a monotonic extension 
g1 defined on  L   ,*       !'y:  ' X fU J    ^ x.' 

of g which is not fie natural extension. 

in general, we i»«) observe that for a function g to be monotonic, 
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it is nect-ssary that wtienever g(7) H a * x,  for every y > x, g(y) ■ a. 

Hence it  x has at least on« undilined •rgUBCRt, for every  y  in the domain 

ot  g which is nor« i!et:iied than x, x[y)     must b»' equal to  K (x) .  Using 

this, one may devise .1 w.iv ol wonotonieal 1 v «xtCIUtlng  g'f which satisfy 

some equations.  This can he slated more lormallv, but examples will convey 

the idea more clearly: 

(a) Let us consider the binary multiplication  '"'  over the integers 

Z;  this function satislies the equations ; 

VXfZ  u'x = x'  - 

Hence we may extend  '•'  on  (Z+)   by: 

I ''ju ■ D'G B 0 • 

This is a monotonic extension, which is not the natural extension.  On all 

other combinations ol arguments involving x, '*'  must take the value % 

it it is to stay monotonic. 

(b) The sequential  'ii...then...else...'  connective (See Paragraph 

1,3.2) is another example of a monotonic, non-natural extension: 

V x e D:  if T then x else x = x 

corresponds to the equation: 

V x, y € Ü, if  T  then  x else  v  = x , 

(c) The  parallel      ' 11...then...else... '     connective   (See  Paragraph 

1.3.2)   is   still   a   further monotonic   extension,  where: 

:   x  e  D:     if    x    then    x    else     x    =  x 

corresponds  to   the   equation: 

yt   e'T.K} ,"','xel),     if     t     then    x     else     x    =     x. 

k,2,3    Monotonie   Functionals 

We have   seen  several  kinds  of   functionals  in previous  chapters, 
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t or   cxanip) e ,   In        .    . ' : 

Kunctionali over  pi     !|V T
,   lor  conn.atible    t 

11 

Functlonala over  pi    i)4) ■,   Cor ^cooisAtlblt   i 

Funct ioiia! .s   o)   pi      D)    into   pt'o'1 ' L) * ,    'or   correct 

Kunct ion.i 1 s     o!     nt    [Dj into  pi     D   '     > A^     ~,   lor  correct 11 r    \ \       f mj t 

and   we  will   st-t-   tone  more   lator   in   this   chapter. 

All   these   lunctionais   aic  mappiims  ol   seta  ol   partial    functions   into 

sets  ol   partial   lonetions.     We   know  that   the  extension I.    relation *   is  a 

partial   ordering   on  those,   and   therefore   the  general   definition  ol 

monotonicity  carries  over   literally   in   this   case. 

■• .   .••    c.'ont inu-'us  Funct i orut 1 g 

As  in the previous case,  the general  definition of continuity 

carries  over   immediat elv   In  the   case   oi   tmutionals.     Let     A,H     be  chain 

closed  sets of partial   functions ordered by the extension relation    <.    Then 

a   functional     -     ot     A     Into     B     i.8   gont j nuPUf   ill,   'or  every  chain    K     in     A, 

HI   1 ub  K))   =   lub n  K)) , 

i.e.,   as   in  the   general   cas«  ,   the   right   hand   side   is   roquired   to  exist     and 

be   equal   to   the   Left   hand   side. 

We will recall hen- a property i I chains and their lubs in the 

case o! partial function^ which will be • us< later in this chapter. The 

proofs ot  the property appears  in Appendix  !. 

Propert y:     Every  chain    K     Ln pf(S    • R)  has a  lub, which 

satisfies   the   following: 

The   extension   ti lation   has   been   defined   in 
Append!x   1 . 

,   :ootnote.     See  also 
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i %   *  ii      il      Hi       ,   f(5)        i   th«n   lab  K/   -_        4 , 

otherwise, 

/l   .;   K,   ;   »'   /   J- ,   luh ;K; /;        i   ») , 

If.   In addiLion,   every  element   in  the  chain   is  I BOtlotonic 

partial   function,   then   lub  K     is ■onotonic. 

Henci-     pi   S     • R]      is   cha. :   doled,   and    .      is     ml   S        K 

when'    ei  S    • K]   dcnotti  the set ot Bonotonlc   puitiaj   functioni   ol    S ■• R. 

Supposing   tht   chain     K     is     • i .        i  .•     . .     witii     i        i   =     t     *   ) 
1 ~    ' i J 

then   the   above   property   inplies   the   Colloving: 

.p' >'  S   «   S'     there   is     i     > such   that,     ■ i        i    ,   lubfK)Ct5        t"    >" 

Notice   that,   in   the   case  oi   1 ui.ct i .'iia I s .  Bonotonicity  does  r.ot 

imply continuity.    For exanple,  denoting,    Z    the  set   ol   the  integers,  and 

the totally undefined  function over    /.,     let  us dt fine  the  functional 

over     pf  Z       h\ : 

I i total    ■ i 
ff € pf(Z),   -rff     ■    \ 

■the tvite 

it   is  eai>   to   see  that     '     It monotonic.      lowevtr    '     is mu 

continuous (consider tht  chain    K -   'i        i 
i   i       _    - • 

n  £  i -, 0 
where   f.   n 

i 
i otherwise   -• x 

•or aI1     '  -        '   'i -   ^     i"1' ''';:   -        «Aereas       lub-K)     Is th,   zero 

I unction      ,     and     -    lub  I 

■ . ■'     Vlgnotinicai ly   St nu t irt'ci   Kecursivc-   Delinitions 

■• . • . 1      De I i ni t ii n 

lvl     ' P»*]   ,',■ • ll'rni over some  Interpreted alphatet,    He say 

that     '    is mqnotonical ly st ructurt'd  iti  the  Interpretation    K    ot everv B 



which   appears   in      I     is BoitOtonic     JS  defined   in   ,.   .   }.     Notice   that 

subtemis ot munotonical 1 s' structured urns are Bonotonlcelly structured. 

A  recursive  Je t i nit ion     1   x =     ■   F ,x;      is   SiU>i   to   be 

monotonically   structured   ill      •   I-.x)     is  utonotoiii cal iv   struct und. 

Monotonlcelly  structured  recursive definitions are oi   special 

interest   because   the,   possess   least    flxpointS     Section   ■ .■■ '   snd   these 

fixpoints   are  cumputahie     Chaptei 

We   are   now  going   to   show monotonicily   and   continuity   properties 

of   the   partial    functions   and    tanctionals   associated  with  monotimica]ly 

structured   tenns. 

U ,' .       Moiu'tonici t',   o _   ^i fj   and j_    " 

Lemina:     Let be   a monotonically   structured,   correct   term. 

Then,   tor every    1   i  pi     D"* 
n 

1     monotonii 

Prooi :     Let 

1       raoiiot oni;  . 

pi     D ]     be moroton i c .   Snd   let     '.     %    D"*)       be 

such   that 

<   i We want to show     ■  t    r 

i.e.     r(f ,5    -   & i,'       ,  by    ";■.•;.-'' b   . 

We  proceed  by   structural   induct ion  on 

Case     i   :        f « x..  Then \ J I. . 

Case     ii 

■ i 

• 1 

i .    Hi. n     i   i ,e 

and 

Case    Lii 

Case    Iv 

i e n     ■   t t ,' 

1,11,1 '■ ''=    tfixiui)    '.r: 

jyFor    i correct ,   'I t     am 

•   g   '^   l,'    ■     f »1|) Induction livpot lies i s   ai^l 
noiiot on i i. i t v   o I      g 

have   In en   de 1 i noil   in   J    .    ,'   hi. 



Stti  .v :     a = FCOL .q  a ). 

Then     5(f,{)        f(5l(f,f),...,5n(ftf)) 

■*   ^  'l   f •"■ ••••'~^f.^)) induction hypothesis  and 
monotonicity of.     f) 

a 
Lot   >ii  call  Bfr  l)f       Ch«   .set   ol   all   monotonic   partial    fuactioM  in 

Ma(IH").    t.e.s    mfn D+    . [i   . pf^ D+^   i   ,   is münot(inicj ( 

A'C  havi': 

hi2E±-     Ut       I    bt-  a monotonically  structured  correct   term.     Then 3 

is   a monotonic   lunctional   of    mf     IJ+;      into     pf\' 'D+;"    , ^) . 

^'roof:     This   says : 

VI,g   |  mfn J)-»-;;    f < g    .>    5j f]   K ;^g;   ^ 

which   is  equivalent   to; 

Vl.g  . mfn  D+)J   f < ,    ->      v F e   ^     Vf^  ^ ^h>r))   i 

We   prove   the   last   property  by   structural   induction  on a. 

fim-iili        » =   x..     Then      j   f.r;        Vh,f;    .   F,   . 

Slii LL.:       '  = i:  e   C,     Then  ^   1 ,f,    I   ;';  h,|".        c 

Casc    "i   :      I  = x.     Then      S   f,f]        V h,?"        -JU   . 

Case     iv   :      i  -  y   ;   ,...    ;   ' 
'      1 '      ' '   P   ' 

Thea>   ^  a11   ^   1  - i  - P-       \{tX]   " \*J. (induction hypothesis). 

HenCe:     g  yf^'---^p   f.r^   ^  i^Ch.?) yh.f))      (Monotonicity of    g) , 
1 .e.        5(f,5)   <  Q  KjF   . 

Then,   by  induction hypothesis.     Vi,   1  _ i   _ n 5 (f.f) ^  O  (g.f). 
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Hence: r f,» t    '.    1 ,*" , 

<   t(a.(« 

'„•■'.■ 

1   B 

g.e) 

MonotonieIty oi   f) 

Hypothesis      I   »   g, 1 

■    i(ti|    • 

It   a   term     -      is  ccnipat i b I r   In  addititm  to  boiiii'  monot. onicall v 

structured.   then 

"roo 1 :     it     ^     is  compatible,   and     1   r;  pi     D) ,     then     "' t     c   pi     D 

i     i nonotonic  functions! over   mf   D ^: 
n 

. •'.      .      If     f e mi    D'*    ,     then     -   t     e.  mi     l)4       by  the   first   Lemma 
n n 

above,   and     -     is BOttOtOnic   over     mf    r*       bv   the   second  Lemma  above. 
n 

Notice   that   there   dn.    uims     -     which   arc   not   monotonica] 1 v  structur'd 

but  which   .•'re   such   that     ■      is  Bonotonic •     On«  ex.unple   is   the   lol lowing: 

-'i',x;   =   it     !   x then    P   x       else 

It   is   not  monutonical1>   structured   becaise is   not  monotonic ,   but     T 

is monotonic,   because   it   m.i})-,  everv     t   .:   pt   D*       into   the   Bero   lunction. 

Notice  that   in  thi!   cet>e, ! ,>.       can   be   replaced   by        ' 'F,Jt]      in 

such  .i wav  that    ''  =  - ,    with Bonotonicelly structured,  the most 

Foi   another one,  tee Chapter  1, Section  l<   , s imple     • '     bt> i ng 

Fixamph 

'.s'c don t  know whether  this  It possible  in generel. 

Notice   alsi,   th.i,    tht    last   lomma  above   is   falsa   il   the   lunction variable 

can take nontnonotonic values  in    pf    D
+
  .    For sxaiaple,  it we take 

K,x l    !'  >; an!   it   we   consider     I  e   pi IJ+   : 

I othetviso   • a    f 

and \\   r.    p!    D1 

11 he rwisc    • I, 

70 



1 

we  have     t < h,     but   Dot     T[ f ]   <  rlh],     since     r[i]{0)  ■  0     and     ?[h3 (O)   I   1 

So.   even   though     i      is munotonically   structured,     j     is  not monotonic  over 

□ 
;. . ■ . •'     Monotonici t v  ol       d 1     aiui    i   -J 

We will briefly nantlon h«r« the ■oiMtonieity properties for 

I   t    and      i. 

First,   notice   that   every     t   |   pl^  D)   is   trivially monotonic, 

as  observed   in   ' • .    . MVC. 

Simiidiiv.   for every    i  .; pf^D),    a( f ]   !• acmotonic. 

Irivial,   by   the   same  observation. 

The  analogous  oi   the   second   lemma of   ;:  ■..-■.:    is: 

LeiiiiM-     i-<-1 be   I nonotonical ly   structured,   correct   term. 

Then      I     is  a monot .mi c   fimctiottel. 

ilLiül: it   ■ monotonic     lunctional   iff: 

tur every    i, h .; pf   D  : 

f < h   ->     y f , j/1      ((£,{] ^ ci(h,f)) . 

L««      f.*»   ■•   Pln  Di      iUCh   that     f   v   h,     and     f e  D" .     We  have: 

1 >' •'   *   ■' Paragraph ;■ .5.^, .i; . 

Now     f+    and     ti       .ire   trivially monotonic,   and   since     f < h    we 

have     1+ '.   h+.     Furthermori',     I)'1       |)f  ' 

ol   previous  section  to   i;et : 

a^f+.f;   v   rh+,f  . 

Hence,   using  transitivity  end   Paragraph i .jJ.J.l   once more: 

'   f,%     ■■    i  li ,f 

If, in addition  to being monotonically structured, 

and we can apply the second lemma 

:-] 

thl tern    is compatible, then  -  is a monotonic functional ov-r pf (D) 
  r n^ ; 

♦ For  correct, /l  and / have been delined in 82.3.3(1), 
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1 
U , ■',.    Continuity of   ~_ fl m]A r 

Sinti'     i'\      i •, ,i partial   function, nonotoniclty  is equlvAlsnt 

to  continuity,   ami   th«   lirst   Lftnnia  ol      .    .     tella  Ufl   that,    tor  every 

f |  pf    nf': n 

t    niii'iiit onlc •  t      cont Inuoua. 

The contlnult property oi      ■, vhic'1' corretponda to the 

second lemma ol   •.   .      and I     srtuall)   ttrlctly stronger , i r;: 

LCT»na:    'it be   i monotonlcally  structured  correct   tern. 

Then     /     is  a continuous   iunctiivi.il   ol     nf    .0+       Into    ml     1)+ . n 

Frort :    Ut   a 1 read)  i-now   i rom that      '    is a moiu tonic 

tuncti Mial   ol     m f    1J+       Into  mf       !i+  '1        •    . n 

Let     K     be  a  chain   ol     m f    !)     .     Then wc   knew   that      i  K]   is  a 
n 

chain of    ml    D+       > A) i  and  therefore that     lub   ■ K.       exiata an,l halonga 
/ 

to   the   same   set . ■J 

lo  prove  continuity,   there   remains   to   thow  that: 

i     lub  K       -   tub    •     K 

We ■.■.■ill dc th s by structural induction on 

Case  i, :   ' ^ x < i . j   ". 

Then, lot everv  f^p!  D^ , for everv ~,   D"*  . we have: n -       • 

In part it ular,    lub K   ¥ ' 

On the ofhej hand, vu alao have i .   ■■ » - 

).; ff r so, bs  definition ol   lub  :   li 

Hen« e i lub K      ■   lub   i    I 

Case     i i    :      -   -   t    ,  ( • 

Then,   f( r everv    i. pi    D*  ,   for every    ft !''     , 

'■    t   F       c. 

^/ Actually, one could prove continuity without using the fact that § is 
monotonic over ml  D ', and then indeed deduce directly moiotonu: ity of 5, 
since continuity ■, monoton icity . 



So    a  | lub(K)](f)        c. 

On  the  other  hand,   wc   also liavt ,     Vi ,    I [ t. J(f")   =   c ,   so 

lub(~  [K})(f)       e. 

Cast-    iii 

Cast-     tv 

H.dnc«: lub K} ;  =  lub(a [K]) 

i = JJ      Analogous  to  case    (11). 

i   'l''    'P   • 
Let     -.,  i>' 

He have:     r[lub(K      f,,      K ■',i luh K) ] (f),... ,ä [ lub(K)]'f)} 

Kl:iub(ä1[Kl)(F) lubZ  [K](l)), 

by   Induction  hypothesis , 

■ «;ai'a  -•••.a) • 

where we  designate     lub ' /.' Kl j > FN/     bv     a,,   for  every 

3.   ! _ J  .. P 

For every    t.^K,   r I ^1 (f)      K'^^ i^ : T),. • • .'/p; ^ J^?)) 

i t> K a^..   .ap   . 

where  we  have  designated      J.l f. ;
'F';   by a., 

J'    i     - J 

for everv     j ,   1  ■   j  •    p,     and     g  a, ,... ,a bv    a, . J J   ' _J_r. 1 p' • i 

Now,  we  know  that      '  [K]     is  a chain,   and   so,   because 

of  that,   there   is  an     i,     s iv     i   ,     such   that: 

Vi ^ i   ,   a.       a^ iub(S lK])(f).       Property  P,   Paragraph 

lf.2,U.) 

Also,   lor   every     j.l_,)l.P,    ".[K]     is   a  chain,   and   so 

there   Lfi   an     i,     sav     i.,     s';   h   that     fi       i.,   a.       a  j  ^   lub''<.[ Kl) TF)   ■   a. 
J -    J        J j J        ; >s; J 

'•'roperty   P,   Paragraph   ..   ,k), 

Now,   tor  any     i  _ max  i,  ,i.,...,i   ),  we  have: 
u     i p 



lub ' K ' f   a.   since  i 

i     i 

^ al ap 

^ al ap 

Dc Unit ion ol  l. ] 

Since  i > i., ior - 1 
every  j, 1 _ j _ p 

3 : lubiK; |(f) . 

Hence  lub i ' K] )        5 '. lub K)] . 

Case  v : 

Let -; D+ n 
•'n 

We have:  illlA(K)](f)   lub K) (S-t lttb(K)] (f) ,än'lub(K) ] (f) ) 

lub K) (lub/^I Kj } (f} lub *nt Kl ) (f) ) , 

by induction hypothesis 

lub K)(«j,a, ,....a^) , 

tfher« we again desi^nat.  luf) /. [ K! ) (f) by a., for every j, 1 <; j ^ n. 

Now for every f GK ,   we have: 
i 

a i CjCf)- fl(al[fl](f),....5i|:£i](f)) 
,. , i    i. 
i. a a ) 
i  1     n' 

a. , 
i 

where we again designate  ^  1.  P) by a., lor every j,  1 ^ j < n, and 

1. a,,...,a  by a. .  Now, we know that  ■ K  is a chain, and so, because 
i  1     n  '  i 

of that, there is an  i,  say  i ,  such that: 

Y i _; i , a.   a.  • lub(a [K])'?).   Property P, Paragraph kt2,k) 
0 -, 

Also, tor every  j,  1 _ : _ n, /.[K]  is a chain, and there is an  i, 

say  i   such that : 
J 

Vi.lj, '   a.j - lubCajK])('!:} II a. 

Property P, Paragraph .. .■• _ . 

Finally, since K  is a chain, there must be an  i,  .say i ,  such that: 
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mm      ■»■■ ■'■■ ■ 

V i - ^^ 'i dra  an-    ' lub KX*!»«! .•••.an 
wuero  a^a  •  have been dellned above.  (Property P). 

Now, tor any  i j max  ^ilj,*  t ,1  , we have: 

lub(a [K  |   a. Since t > 1 1 
J — o' 

t,.a, ,...,a )  De t. of a I 
i     I n i - 

fj dl'--,'alv'  Si,lce i ^ lj lor every i, 1 < j ^ n) 

lub K; a1,... ,an;  Since i > i } 

S [lub(K)] ,f, .First derivation of Case (v)). 

This completes the proof that  lub 7; [K] )■ Q [lub'K);1 . a 

^•l'L     Continuity gj  3 ' :]   and  5 

a [fj  is trivi«lly continuous, since it la a monotonic partial 

function. 

At   the   function«]   level,   we  have: 

t£2HÜü:    Let     '    be a monotonlcally  structured,  corruct   term.    Then 

3t    is a continuous  functional. 

Proo^:     Let     K     be   a  chain   in     P^'U',     and  denote    K+ =   { f+   j    f   e  K] . 

Then    K+     is   a  chain   in    mf     l)+   ,   and   so,   by   ';■...'.,.   we  have: 

3 [ lub(K+) | = lub a   K"*"
1
   . 

i-e- V  f c  I)",      ••     lub K+      f;   a   lub: *  \K+]]if . 

Now,  we  observe   that      lub  K+    =     lub K"+,   and   that     5  ' K"*"]   = 5 [K]   on D"; 

therefore we  have: 

v  " e Dtt,  3 1   lub K;+, J)   -   lub(a [Kj)fT), 

i-e- " t t un, a , lub Kl(f)  -  iub(a [K])(f)( 

ur: 3  , lub K     =   lub' f  i Kj) , 

which  expre.sses  the   continuity  of a. 
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k tk     Existence  and  Charactori^at ion of  the  Least.  Fixpoints  o|  Munotonically 

Structured   Recursive   Definitions 

U .•♦ . 1     Least   Fixpoints  ol   Monotonie   or  Cimtinuuu.s   Functiuiiai.q 

Let     M    So   a  .-iot ,   .iiid    n     a mapping  ol     M     into     M.      \  lixpoint 

of    m     is   an  element     s    oi     M     such   that     s  = tn(s) . 

Let     M,   *       be  a   partially ordered  set,  and    ra    a mapping of 

M    into     M.     A   K-ast   tixpoint   oi     m     la   a   Clxpolnt     s    of    m     buch  that, 

for every   fixpoint     t     ol     ni,     s  •■   I . 

The   following  general   theorems  are  proved   in Appendix  1: 

Theorem:     11     M    is  a  partially ordered  set which is  chain closed  and 

has  a  least  element,  every nonotonic m.ipping    m    of    M    into  itself has  a 

least   fixpoint   in    M. 

Theorem:     11     M     is  a  partially  ordered   set  which  is  chain closed  and 

has  a  least   element     ..,     and   if     m     is  a continuous mapping    m    of    M     into 

itself,   then  the   least   lixpoint   of    m     is:     l',ib{m   (fi)j     i  s Ol  . 

(The  negation    m     a},  whore     ft c M,     is  dcf.'ned   inductively  by: 

R   (ft)   =  a;       vi  ;•      ,m       (a;   -  m(m   (a))). 

These theorems will enable us to show the existence and give a 

characterization ol the least fixpoints ol monotonically structured 

recursive definitions. 

h .k ..'     Lfzast Strong lixpoint 

Theorem 5:  Every monotonical ly •tructurcii recursive defirition 

I | 
F(x) <-    T{F,X)  has a monotonic least strong lixpoint ,      f .  In 

addition: 

f -   lub  tTl{fl)   I   i   ^ 0} 

Proof:     By  definitioi, a strong   fixpoint   of  the  recursive definition 

is  a   fixpoint  of     T.     Since T     is monotonically  structured   and 
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compatible, we know that  -  is monotonlc over mf (D+)  by  84t3.2, and 

even continuous over mf 1)+) , by {IftJ.U. 

Now the undil imni function  fi  oi  pf (U+)  is monotonic, and 

therefore mf !)"♦")  lias a least ilcment.  We also know, by $1*. ..,  that 
n' 

mf (D )  is chain closed, and therefore we can apply both theorema of the 

previous paragraph with  M - Bf (D+)  and  B ■ T.  Tliis immediately yields 

Theorem '. 

;* ,k .;'  Luast Weak Fi.xpoint. 

Theorem ■ .  Every monolonica1 1 y structured recursive definition 

F(x)  <■  -T F,x)  has a monotonic least weak 1 ixpoint ,  't'     .  in addition: 

I = lubfT^:.) | i ? ,} . 

Proof;  Entirely analogous to that of Theorem ;.  By definition, a weak 

fixpoint of the recursive definition is a iixpolnt of T.  Since 

T  Is monotonically structured and compatible, we know that  T  is 

monotonic over  pf (D)  by IK .■.■     and even continuous over pf (D)   by 
n     ' nv   '     ^ 

Now     pf (D)   has  a   least   element,   the   totally  undefined   function    tt, 

and   is  chain closed   (§H.   .■<),   and   therefore we  can apply  both  Theorems  of 

Paragraph k.h.l  with     M =  pi   (D]   and    m  = ~.     This   immediately  yields 

Theorem U . 

It  will be   shown   later     Conment      ,   at   the  end  of  Paragraph  5•'♦•3)   that 

1       extends f       in  the  sense  that     ist       'where     f*"    denotes  the  natural 

extension  of     f,     as  defined   in  Paragraph     .-.   ), 
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r'.l  Introduction 

In this chapter, we essentially providt computation rules which guarantee 

that the corresponding computed function of a monotonically structured re- 

cursive definition is one of the fixpoints of which we have proven the 

existence in the previous Chapter. 

We first define standard simplifications and full substitutions, and 

give the 'full computation rule', which leads to the least strong f ixpoint. 

Then we describe the 'standard innermost computation rule', which leads to the 

least weak fixpoint. 

We finally give a large class of computation rules, which we call 'safe 

innermost computation rules', and which also lead to the least weak lixpoint. 

5«2  Standard Simplifications 

j.ZA     Standard Simplification Schemas and Rules 

Definition:  A standard simplification schema is any expression of the 

form: 

*^i»A2» • • • >An  ♦ a i 

where: 

(i)     each A. is an individual constant or a term variable  a term 

variable is a Utter which stands for an arbitrary term); 

ii  no two term variables arc identical; 

iii  a is an individual constant in CJ 

iv   the equation g ^,r, , . . . , ^    a  holds for all values of 

(%l*ti '?n
N in lUm  I  s,lch that, if A.  L3 an individual 

constant a.,  then 9       is its value a . 
~i        • i i 

Intuitively, this says that a standard simplification schema for 

some given function g corresponds to the property that specifying some 
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of the arguments of | to be constant causes g to be a Constantino 

matter what is the value of the other arguments. 

A standard slmplificatloi rule is any instance ol a standard 

simplification schema where all the term variables have been replaced 

by arbitrary temis in such a way that the resulting leit hand side term 

is correct . 

For example: 

(a1  if T then a else A ♦ a is a standard simplification schema for 

the sequential 'il -■ then -- else', corresponding to the equation: 

V x c iJ^: it 1 then a else x : a- 

b'  if T then a else K x -♦ a is a standard simplification rule for 

the sequential 'if -- then -- else' connective which is an instance 

of the above schema. 

(c) if T then A else B ■» A is not a standard simplification schema for 

the sequential 'if -- then -- else' connective because A is not 8 

constant• 

d   if A then B else B -» B is not a standard simplification schema for 

the parallel 'if -- then -- else' connective, because the term 

variable B appears twice in the left hand side expression. 

(•)  for any given function g, if  ^.^ a
p>  € Do^g) and 

g a ,a?,...,a    a, with a / u,, then 

0ra a     a   ♦ a  is a standard simplification schema  (or rule) 

f  Notice that expressions of the form J 

g'A ,Ar,...,A  -♦ x    arc H21  standard simplification Schemas, be- 

cause, in the definition of such, the righthand side must belong 
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(g) 

to C, henc« cannot b« w. 

If '•' is the ordinary binary multiplication over the Integers 

extendr-d by C » a, . OJ ', Natural extension . then 0 ' A . 0  is 

wt  a it*nd«rd simplificiUion schema  because the equation 

c . ;     doei not hold lor  »  'i. although  (0,®) € Dom *)). 

Howev.-r. il '♦' is the ordinarv multiplication over the integers 

nov extended by   '   n '     «Hllch is a monotonic extension , then 

0 . A -»   Is a standard simplification ichflM. 

At this point, let us emphasi/.e tha: tlu-re arc I numbtt of simpli- 

fication Schemas that one mi«ht want to consider other than the standard 

;. but the fact is that the standard ones are sufficient  to obtain ones. 

fixpoint cOBputationt, as will be seen lat-r. 

Standard simplification rules hnv« 'he obvious following properties: 

1  Let  p i   be a standard simpl i i i >. at ion rule.  Then: 

H f € pi  D  , V C € (D   , a" 1 ,T   Y :»T * 
n 

proo|.  '.et  I ' Pfn D
+), T '■     D4 "•  Than we have: 

a ■- g B .Ig | ),  % ^ a  for some g C Gp and 

sjnc I ( C.  If we denote  i, f .f by b. for  I < 1 < Pi 1 i 

we  know   that   (b^bg.... .bp)   •-    D«    g   .   because   |   is  a 

correct   tern.     And.   because  of  the  definition  of a   standard 

MmpLi fication  rule,  we  have: 

g  b1.b.....,bn    «   a   . 

which   implies:     >,   r w    -   ^   f 7;    . 

[P)     Also:     •;   f   €   pf     D),     v ^   "n.    ^'f.T'       v   f,r)- 

i'r^of:     trivial   by  the  above  property  and  Lenvna 2.7.c.l    • ^ 
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5,2.i     !''taiui.-i. [.  .ilniplU U-aj ion Relation 

.)Ci iiii t Lor|:      ,.'-    undard  süapltflcation relation   is a relatl m between 

terms.     It  conaUta   il   the  -Jt-i    il   pairs  ol   teims       ,,(-'     ■ucli  that; 

i,      . where       • '   is a standard  simplification rule 

I'h is   relat ion will   be   tenol «M!    'I   . 

s , _ -t   n 
Remarks li ♦  c,     tlu-n,    r  f «  pj      D     , P < 

! ,f |'f,f). 

Ihis   La   trivial    froai   the   Jbaervatlon  at   the  end   ol   the  previous 

paragraph and  LcWU     .   -1   oi   ' hapter   'j. 

' '■>,     il      ,   '-»  -     and   ,   is  corracti   r  is  c 'rrect. 

Trivial   li "itn  previous   renai'k   . 

J        li       .   ♦  ,-   -   then   Ißl   •     jr., I,     wliere,   for  any   term 

-,    I -1     denotes   the  si/.e   of   -    number   oi   symbols   in  -   . 

Proof:     the  proui   is   innu-diate.      !i   ernes   from   the   fact   that,   in 

a  standard  tinpliflcation  ruh      %   -,...,•        -  a,   the   ^ngth  of  the  right 

hand   side  is  strict lv   smaller   than   the   length  ol   the   Left   hand   side,   and 

frOB  the   fa' t   that   we  lave  excluded     g   - when      ,  -♦ r.     A   rigorous 

induction argument   ian  easily   be  built   using   ibese   two  observations. 

We denote  by     4 the  transitive   reflexive  closure   til     -♦.     That   is: 

&{%'   a   if and   only   il     ',  =  r     or  there   is  a positive 

integer N  and  a   sequence     ferijO _   i-       N1     such   that : 

(a)   '^  -  ; ; 

l/The   size   |'|   ol   a   tein   •   can   be   delined   inductively   in  the  obvious way! 
' |x   |   -   1   for  every   I,   1 < i < «U   [cj   -  1  fo*  every ^c  » C;   JJJBJ Ij 
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b I      lor  «very   i ,       ■    i   •   N,    (.- .     ;.   ,; 

^N 
■   I  • 

5 • 2 . ^    Staiii.l/"-d   Simplifications 

Let bv  a   ivrm   1 ret'  of     x.     A   standard   sinipl if icat ion  of    Q     is 

a  sequence   oi   tenr.s    r. .+ „,_, n _» 

such that: 

• • • • 

a *    -■   , • 

lbs     i!  i    and r,     is in the sequfncf, t!ien: r,.   , ^ »y. • 
■ i-l    i" 

c^  it  ,  hd.i no successor in the sequencr, then there is no a n -i     > o 

such that * % §> 
n 

Notice that, because of the remark 2 above, a standard simplification 

is necessarily a .* i n J te sequence.  If Q  is the last term of the sequence, 

the simplification is said to be of length n.  A comparison with the 

definition of computations in 8*U*2 shuws that a standard simplification 

of y  is in fact a finite initial subsequence of a computation of y. 

We are now going to prove an interesting property of the relation -5» : 

s s 
Lemma:  For every term ry, II or 4 (y.  and ry 4 QU,  then there is a 

s "        s   ' 
term v such chat y-,-*    y and ->, 4) 7. 

Proof:  By structural induction on ry: 

Casts ( i ). '' ii ;. , iii) :  if  =x . ,  or ry = c f  C,   or    o = uu, 

then the result is vacuously true, since there can be no 0 such that 

<y ■* P    by remark -J above. 

Case iv:  Q = g'r.,- ,...,T :  this case can be subdivided into k 
~~~~~'^~'~~ ^       l        r' p 

subcases: 

iv^l:  »j ■ 8^].---.-i.1.-i
/.Ti+1,...,Tp). 



I. s      ' where      ■ .     •    T,    , 
i i 

and:    »2 = K rl 'i-i'VVl'"""^  ' 

whi-re     Tj   • Tj^     anii     i   ,   i       iuppoi«   i        i,   for  pxample'. 

Then wi-  can   ' ai-i      •    •   g  '!'•••''j . i '",• "■jti' - ' * •" j -1'    j'   j + l' *   ' '   p 

•ine« w« c«n apply    T. 5 -rj    in   »i    t0 8et    »i * •■'•    and 

s s 

similarIv     -:■•-.      '"      ';      wl11   *ivt      ';     * ''* 

iv^-   ',   '  B   r, ','•••'-,.      w!K'r,■     ri  '* Ti   ■ 

an<':      ,,    -   g   ^.....T^ Tp       where     ^   5   ~'.'. 

In this case, bv the induction hypothrsis on r^  «M knaw that there 

s   ■ s   * 
is  a   tem     y.     such   tl.ar     T.:   *    •. .     and     -'.'    -kj    .^ 

Therefore      ,.    ♦            and      ,     I    v,     where: 

V   =   |   T, Vtt.-.Tp • 

ivzl: »j " g 'i v--"  P ' where Ti ' 'i ' 

and Mure Ll I standard s impli f icat. i.)n rule I 

a = | v ••'> ■* «2 = a ' W1'h t€  C- 

ipt  B A    . A  ...A  -»a  be a standard simplification schema of 
it I   ' i    P   ~ 

which g ^  -, T^ -. a is «n instance.  Notice that A, is not 

a constant, since  -.  is an instance ol A.  and we have assumed ihe 

existance of *'     such that  -. " T|1 •  Tlien P "i • ' ' '''i ' " ' * ' > "* 5, 

is another instance oi the same schema, where A. is replaced by the term 

T' and all other A., j ^ i,  are replaced bf     -..  Th«r«fore 
i 1 J 

B  „ T' ....T  -»a  is a standard simplification rule, and 
»  1' *'"' i'   ' p 

a,   I « " a««  There »ore v ■ Br« w111 be suitable- 



tv-4 :     There are  two  standard   simplification  rules 

i/v^V ****** ' 
and:        ?. ^1' ' " * ' "p    ^ r'^  ^ ^    ' 

f 
Ihen,   1ft     f   ■    pf     D       he  an .irbitrary  partial   function, 

For  any     | <      |j     '',     §   i ,p a     ! ,» a 

t     f,|        b,     bv 

the  obserwicion at   tiic end  oj .,''.1   . 

Hence     a   -   b     and     ■,'=,.   "a.   will   b^  suitable   . 

CD 

Conrocnt :  I his is a Churcli-Fossei property for the standard simpli- 

fications.   See Ko^.-n  1 ' 1 ). 

From this Lenma, we easily -reduce an essential property of the 

standard simplitications : 

Lemma: All standard simplifications of a term y    terminate with 

the same term. 

Proof:  By induction on the size of the term ^. 

:'i)  [or] = 1.  Trivially true, since a has no standard 

simplification, 

ii  Assume true for all terms of size less than rj,  and 

assume that there are two standard Fimplifications of a: 

s   s   s  s 
v -*   /^  -* o,^ -*.. .-*  on , and : 

S   /     / s    S   / 
T -♦ -j-^ -♦ 'Vg -♦...-» ^  , . 

loJ' \a\$  a^ by induction hypothesis, all standard simplifications 

of y tenninate with the same term, which must be ry   .     Similarly, all 
i n 

standard simplifications of -' terminate with the same term, which must 

be -/,. 
n 



Ncv,   by   the  ptvvi'ius  Lemna,  wo  kiuiw  that   tlu-re   is a  terra    y 

such that    -,    ♦   ■,    and    Q'.'C'] V    fc»*    Ivl" '-I»    an(J thertfor« all 

the   standard   s imp] i t i c.u i nns   of     ,     must   lemiinat c with   i he   same   term 

v   •     HOW    y    appears   In  ■   standard   simplification  oi     ,,   ,  which   implies 

0     "- v   .     SimilaiJv      ,',   -   ,   ,      fron which we  conclude:     a     -   o' / n p n p n n' 

For every  Cenn free   »i    v,    w-.  will  denote by  Simp   ,    the 

conanon   final   term   oi   all   standard   Biaplificationa   of   ,. 

We will   need   ong more   property   of  stondard   simplifications,   namely: 

Lemma:     Let       .   be  a monotonicallv   structured   term,   free  of  x,   such 

that     v'. , a'   for   some  a  £   C     not   x' •     Then   ';imp   ,     = a. 

Prooi:    By  structural  Induction on Q  , 

Case     i       ',   -   x.      :     excluded • 
 —- i 

Case     ii        ,   -   a  ■    C.      Mien   Simp  -,   - a   ■ 

Case     iii        ,   -   j      :     excluded. 

Case     iv       ,  -   ^       ,-,,..., .      : 
i     <. p 

'»     . « '--I     .      - • • • i''p     . a   • 

Let us denote , ■   .n by a. f r every i, 1 ■ i _ P» 

We have  g a . , . ..,a   a. 

Now   it   is  easv   to  see   that,   bernuse  of  the morotunicity   of  g, 

there   is  a  standan.   simplification  schema: 

- A    \       -»a     , 
1 p ^    ' 

where,   for  ever;    t,   I < i < p,     if     a.   /   m  tlen A.   =  a.. 

^/The  notation   tff,      ,   when   '  is   tree  ol     x   ,   has  been  defined   in   |2.1» 



[Let (b1,b0,...,b ) be an arbitrary element of Doin(g) such that b = a 

for every position i, 1 < i  p, sucli that a. ^ $, To satisfy the 

definition of a standard simplification schema, we just have to show 

that  g b .b, »....b    a.  But this is the case, because g is monotonic 

and  ^a ,a , ...,a  • ''b ,b  Ol* 
It.'     p     Id P 

Now, by structural induction, for every position i, L < i < Pi such 

that  a. / x, wc liave Simp;'ry. ) a a .  Let us denote by 0., for every i, 

1 _ i  p,    the   term defir.ed as follows: 

if a.. x.  Fi - a. , 

otherwise,  p. = -. • 
i   i 

Then wc have the following: 

and since a  is the final term of this standard simplification of a, 

we have Simpi," ■ a , which proves the property for this case. 

Case  v  o = I '/, iCfei • • »OL • 

this case is excluded, because iy(U,    )   = w 

a 

5.5  Full Computations OJ 

5.3.I  Full substitutions 

Let a  be a term iver some alphabet, and let  Ffx) •= T(F,x)  be a 

recursive definition.  Then the result of substituting F by its definition 

for all occurrences of P in ry, which wc call full substitution, is a 

- This section owes nuch to discussions of the ..uthor with J. Vuillemin . 
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term, dtnotcd Fsubst    , and which can be do lined inductively In the 

obvious way: 

^'i  -  iii   ( - x., c, or OJ : Fsubst (Q    I ; 

» 'm i(a] v: 

Fsubst  I  = u Fsubst  (, ,..., Isubst (Q   ))   » 
T      ä       1 ' 1 T  P 

Fsubst (a)   - 'F, (Fsubst [a. ) • • i • i Fsjbst (' )'■■'.. 

If  / is free ol  x, it is clear that one may go from .; to 

Fsubst ' i       by applying intermediate stops  b: of the definition o) 

Computations in , .-. . .  This means that  Fsubtt (ct) is allowed to be the 

term following  ;  in a computation. 

Full substitutions have the following interesting property: 

Lemma:  Let  i  bo a correct term ovor some alphabet and let 

F x)  ■'.=  T F,x  be a recursive definition.  Then: 

i subst  ■•  - *"< . '5- 

Proo i :  Hy definition of tlio iunctionals, the above statement is 

equivalent to: 

Vl> pf ''D* , Fsubst  <' ' f; •(a.'r) [i] 

= a[ T| f]]  Definition of functional composition. 

i.e.   Vfe pi ''D+ , v?t I)"1"'1,  Fsubst '/ 'l  ?;  "^^ f j(f) 
n ■ T     ' 

i.e.       Vfe  pf   ^D+, ,   VtV/rj+ri,    Ftttbtt   ' '     t,%)   -• u(7[ f] ,f)    , 

We  prove  tfio   latter  statement  by  ..iiuctural   induction on a. 

Case   'i       v = x.,   1 •    in.  1—^ j^ _      _ 

Then:     Fsubst   [a)   ff.f        ^(f.fj   » |i    -> 

and :    W^ f],|) !   I1    . 

^The notation    rir,i*i en))    has been defined  formally in 6 2.1+.1. 
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Case .11} cr " « € C 

Then:  Pfublt o;  f,f)  8(f»?) 
T 

Case (111) a ■ u: Analogous to above 

Case (lv) a -  g1 0-] »r<2» ••• >''„'' ' 

Fsubst (o) (fif) - g Fsubst (ffT) (f,f),...| Fsubst '-/  (f»f)) 

! gf'^ r f i.T1 8LflUhf) 

•SClf .?) 

Casr   [vj     a F 1 Q . , Op . • • ., Q'n)   • 

Fsubst   (a)   (f.f)   - T'F,■Tsubst   (cy, ). • • • .Fsubst   (of_)>)   C»f) 
»^ •- f -L Til 

»*ft<p»ubit (er,) (f»I  Fsubst [aj (f,f)) 

by  Lemna   5.2.2  of Chapter   % 

*lKt,' ^(ft«l,|H'-»9n(M«.f) )   • 

On  the  other hand; 

¥^.f',V     rCtfj cyn) (Itflff) 

f[£l   '^(^f] ,?),...,^n(^ fl.f)    .   ,: Ince 0 is correct. 

- >(f.- f^fl,!) §n;^f].f)-) 

Fsubs; (a) (ft!)    (above derivation). 
T 
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'j.^.'d    Full computations 

Definition.     The  full  cornputation of a  term    a(P,x)   for x =  c" c   (D   )   , 

using a   monotonically  structured  recursive definition: 

F >:"'   ■ -   j( ¥,x^   > 

is  a  sequence  of  termt,     ,.,   such  that: 
i 

o    "   ,  i',c  •  and   tor every k _ o: 
11 /^, 

\:k+l 
= Simp   -k 

>k+^" Frib8t
T
(o?2k+i)4 ; 

It is clear Chat B   lull computation is also a 'computation' in the 

sense of " 2.U.2, bt-cause, as we already observed, one can fill in inter- 

mediate steps between a  and Simp r^   which satisfy case bl' of the 

definition in -" . .-.'.:,  and similarly between o^+i and Fsubst (ffg^) t0 

satisfy case (b2 . 

' , 5. ■■ Theorem S 

We will now show that the full computation actually leads to the least 

fixpoini of "f for a monotonically structured recursive definition F(*) ;=-(F,x). 

Wc will first prove two lemmas. 

Lemma:  Let {c/.\   i > )]   be the full computation of a(F»S:) for x = c, 

Ultng a monotonically structured recursive definition F x <■ T(F»K). 
+ 

Then, for every  K _ 0,  for every f £ Pfn'D '* we haVl- : 

^2k = 'sk+l = V^1 ■ 

Proof:  By induction on K. 

IU 



(i)    k =    . 

§0 
= a  "^ .   since If    is  the  identity  functional. 

Then QI  " Simp(a )  and  therefore &   = a  ,  by  remark 1  of 

6 5.2.2, 

(11)     Assume   true   for  k-1,   prove   it   for  k. 

^a)     a k+i  :: simP'c/.lk^,  and  therefore,   by  Remark  1  of 

5   5»<  .2,   Slice   Q^.    (-»)     Oou+i •   we   have: 

" ft? 
• i t    -  u  , 

k k+] . 

(b)     a2k --   Fsuhstja^^),  and   therefore,  by  the  Lenrna 

of Section  'y .',  we have: 

a bk = rtübat
T^k.^ =^k-i 

rjo '   T,  by induction hypothesis. 

= * • yi
> by associativity of functional 

~k 
composition and definition oi    V . C3 

We can now prove the following Lenma which is of interest in 

its own right: 

Lemma:  Let a be a monotonically structured, correct term, 

F(jf) '= -rfF.x)  a monotonically structured recursive definition, 

and c" an element of D N .  Let i denote the least fixpoint of 
T 

¥, and let a denote an element of A-  Then: 

(1) The full computation of a  for x = F using the recursive 

definitirn terminatejwith a if and only if: *§{?  ,c) = a . 

(2) The full computation of Q for x = c using ehe  recursive 

M  *• 
definition   iocs not   terminate  if and only  if:    o(l   ,c' 

n 

UD ■ 
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■' ,l"tm   "W»   l.»i, .uili.iiUlll.Hllllll.ln,..       IIHWUIIIIIU..  , _ __._ ^ 

Proof:  Note that (2) directly follows from (I) and from the fact 

A -t- 
that i  is  correct: ly{f  ,T) is in ^ and if if is not in A it must 

T 

must be a'. 

To prove (1)| we first noru that If the computation terminates with 

a, Lemna "., .  immediately tells us that r?ff tV)     a,   s-'nee ^ is a fixpoint 

of If. 

,h  _ 
So it remains to be shown that if yi i   ,c) - a, the full computation 

of Q  for x = c terminates with a. 

A • 
We know that t    ■ lub f* [Q]I i _ }, because of Theorem 5 (Chapter 

Let '',.\   i > O)  he the full comp'tation of a  for x = c.  Since a  i-8 

monotonically structured, y    ■ ^(F.F' is also monotonically structured, and 
O /»«r 

^ + 
therefor».' Q  is continuous over mf  D 1 by 6 '-t.^t^.  But f C mf 'D ; by 

0 IT   ' y  ^      *   a  ' ' 

Theorem  , and therefore we have: 

^i lub f^1:   :I  i _ D}] ■ 1Mb r^o . ^{QJI  i _ : 1, 

i.e. S.[^ ]  *  lub  ffl    • ^     .1   i      :,]. 'O        T ' 'o '      . _        J 

But:  ■••• f c   'D+^n,    § [f  I   ff]      S    ff  .r) 
- '     J(y   T      - o       T * 

& 
B S0(*Ti   )   .     since  ao  is  free  of x, 

= a ^ ,., 'Hypothesis) . 

Therefore,  by definition of  the  lub,   for  every Y C<ü  ]   ,   there must 

be  an   i  _       such   uhat: 

fo0 Vl    1   (?)      «. 



But, by the previous Lemma, we know that, for every i >o 

^i = %i+l  =\'^   • 

Hence, for every ? c: (1) ", there exists an i   0 such that: 

5 ■ ::i -   r'   .^ i .. ) - a. 

But, by th< Ltama ot f   ... .;, we know that this lapllea that 

8iap(a . ■ a. 

Hwce x   l+1   Simp ^1) - *, wi.ich proves that  the full computation 

of , for x -: c tenninatea with a. 

As a direct consequence of the previous Lemma, we get: 

2a2£g! , :  Pot a monotonicaily structured recursive definition, the 

partial function over (D+)n computed by full computation is the least 

strong  lixpoint   of the recursive definition. 

Proof:  Let F x,  = - F,x; be a monotonicaily structured recursive 

definition,     let f£ be the partial function over (D+)n computed by 

full computation, and let l_ denote the least strong fixpoint of the 

recursive definition.  By d«tinition of f , if the full computation of F^x' 

for x = c terminates with a, then I  c'   a.  But, by the previous 

Lenma used lor „ - FCx). w also have ^ (c) - a in that case.  If the 

full computation of K x  for x - <r does not terminate, f (c) s « by 

definition of ^ and ^T   m  by the previous Leuna. 

Hence:     1      « T   , 
c D 

5 •*♦     Standard   Innermost  Computations 

•', «i     i'arallel   Innermost   Substitutions 

>e  a Let    , be |   term  over  son«   alphabet,  and  let  F(x)  ■-  T(F,X)  bt 

recursive  d.finition.     Then   the   result     of  substituting  F'b)   by   T(F,b) 

where b r   C  |   foi  aU  occurrences  of  such  terms  in * which we  call 

parallel   innermost   subst ftion,   is a  term denoted     Psubst   {a), 
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which can be defined Inductively in the  obvious way: 

(1) - iii  Q - \  ,  c or m:  Psubst a) -  -> , 

ivX o - 8  ,a ): 

Psubst    Q    - g(Pgubit  tcr-)   Psub.st  ("Q )1. 

vj    -, ;- i   ?l,...,an)! 

if,   lor  t'vory   tf   I < i < n,     a.   = a. ,     a.   C   C, 

then:   Psubst   («)   ■   T(P|   <  a   , . . . ,a >) , 

otherwise,   Psubst   (a)  =  F'Psubst   (Ä1) Psubst   (»))   • 
T * T- n 

If Q is free of x, it is clear that Psubst^) can be derived from 

o by applying intermediate steps b?) of the definition of 'elementary 

canputations' in 2.U.2. Actually, these steps verify the condltltns of 

?.4.5, so Psubst^ a,] is allowed to be the term following a in an Innermost 

computation. 

5«^ »2  Standard Innermost Computations 

Definition:  The standard inncmost computation of a term ^(F,x) 

for x = c <" D , using a recursive definition P(x) <= - F,x),is a sequence 

of terms ->. such that: 

and, for every k _• 0 : 

| ^k+l " Sin,p(^k 

l 
( ^j^+o " rlUMt (o ^+1/ » where the notation 3Impf/)) 

has been defined in ?. y.'.^ and Psubst ''0) ii. / 5...i. 

It is clear that a standard innermost computation Is an InnL-imost 

computation In the sense of ' ? ,U .vj. 



5.') .-  Theorem ( . 

We will now show that the Standard computation rule actually leads to 

the least fixpoint of 7 for a monotonica 1 ly Itructured recursive definition 

P(X) ■ - F,x). 

Let us denote by f the partial function over Dn which is the com- 

puted function of the recursive definition F(3f) ■= T(F,X) by the standard 

conputetion rui.-. 

U'e first prove; 

Leinma: Lvt     ■ r'>;  f11' a correct, monotonically structured term, and 

;■; ■- - !,>:,: be a monotonical ly structured recursive definition,  Then, 

for every c i    D 1 

1. 11 the standard innermost computation of ,r for Y. ~ T using the 

.ecursiv. definition P(x) ■= T(P,X terminates with a constant 

term a  C, then: 

Q 1 »C) i a, 

I . othervitf; «(f ,Z)      ,x . 

Proof:     Wt   proceed  by  st/uctural   induction on 

Cases   i^iii):     a  = x   ,     » - «  £   C,     a ■  BJ     trivial. 

rast->   iv:     Q "  go, ,a     . ~-     i p 

\    .umc   the  Lemma   true   for  every   o.,   I       j        p. 

'.. ■   have : 

•  i   ^/ ■ | öJV^IC) »••#,»    l.c'i     by  2.5,2  av'i^,   since  a  is  correct, 

Let   us  designate aAt^T,   by   a. , f or  every   j,   1 _   i   < p    and 

K a.,..., i   '   by  b. 

BeCftUM  ol   the  definition of  the   standard  innermost   computation, 
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we have  a    - g   ^ ,,..,., ^     for  »ome  N,   (   <N <«   and   for every  i, 

0 < i "   N, wheri,   for »very j,  1      i      p,    f«    I 0 < i ■   Ml 
-     - j   '      "     -   • 

consists  of  the  N  +   1   first   elemcnLs   of   the   sr.andarci   innermost 

cümpiit.it iun of  y,   for  x  =  c using   F(~)     =   T(F,X). 

Oiiiv   two cases may  occur:     N   is   Infinite  or i\'   is   finite. 

Case iv'ai N » « 

In this case, wo must have b - a,.  For assume b / m.     Then 

let .1 be the set of indices between 1 and p such that the standard 

innermost COTputation of a    for 7 = c using F'x) ■- T(F,X) terminates. 

By induction hypothesis, we know that,for every such j G J, the standard 

innermost c anputacion of ^. terminates with a . 
J ~j 

Now, let k be the smallest Integer such that, for every j € J, 

Q?j = * j •  /If , is empty, then k ■ 0; otherwise, k is the first 

integer for which all the terminating standard innermost computations 

of a-   s hav.- actually terminated in k steps' . 

We have: 

k     k fa 
o^ = JB' ^ . • • • .j--}. where, for every j r J , a. = a. . 

Sunmari-ing what we know by induction hypothesis, we have, for 

for every j, 1  j v p: 

if j C J, then nf. (f JT)  a.   r   D • 
J  s      j    ' 

if j ^ J, then ^ (f ,c) - a    = w . 
J  s      J 

But, since  g  is monotonic and  ^'a ,a ,,,, ,t )   b  /  HJ , 

there is a standard simplification schema : 

g(A1,A A ) M  b, 

where, for every j G J, A. = a.. 
J  ~.1 

Hence we hav the simplification rule: 

qt 



,  k    k kN      u 
£\ o^ i «2 > • • •»o  j ■* b   . 

i.e.:     ^-.b. 

But   this mjans  that   Sijnp(a )  = b   . 

Now if k  is odd,   this  is a contradiction,  because we muat have 

o^ = S imp(».)i 

If k  is  even,   this means  that  ^        - b,   since  QU    .   = Sljnp(Qu ) 

in this case.     But  this contradicts  the assumption that  the computation 

of Q/ does  not  ti-rminatc. 

Hencei   the  .issuniption     h flm    was   false. 

In  this  case,  we must  have    aft   ,c)  ■ & and  the  standard 
s 

innennost computation of  Q does not terminate. 

Case iv-b:   N < » 

N      N 
We have: o.. = g'a, • •••»(> )  and att,^  = a.  since the 

computation of o terminates with a. 

So there must be a standard simplification schema: 

«jAj ,A2,.. t.A ) -• a       , 

N      N 
of which % or,   ,...,<>) — a is an instance. 

This means that: 

'a;     there must be an equation: 

S'W-'V ^ a (E) 
and a subset J  of the indices from 1 to p fjuch 

that E holds for every tuple "?. ,f?, ... ,F >€ Dom(g) 

97 



such that, i G J =» P , s b. , where the b.'s are 
.1    1 J 

individual cor tants in £. not u)). 

N 
b      For every j G J,  Q.  - '"> ., where b. is the constant 

lit-fined in fa)« 

Hut 'bs implies that, for every j G J, the standard 

innermost computation of a.   for X = c terminates with b. 
J ~J 

Hence, by the induction hypothesis, it must be that: 

r s '   j 

Now we know that; 

a(fsfc) ü g'o^'fg.c),...,op(fg,c)) 

g a. , ... ,a ) , by definition of the ai 's 

Hence, the tuple a. ,• . .a   belongs to Dom(g), because 
P 

a    is assumed cirrect, and is such that: 

j G J rs a. = b. . 
J   J 

Thus equation  (B)  holds for this tuple and we have: 

a1f8,c)  ■ g(«l)...,a ) ■ a . 

To summarize: in case iv-b: »(f ,c) = a and the standard 
s 

innermost computation of o terminates with a . 

Cases iv-a and iv-b cover all the possibilities for 

case iv, so we have proved the Lerana for o ■ |(Qht«**tt )• ^^1    p 
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i^J3e_v:  er ■ T'a, ,^,....0,   )  . I    ^ n 

In this case: 

if  3j, I < j <tt, such that «.(f .c) i », then a(f ^ = w 

otherwise; ^(^.c) ■ ff (C^(ff ,c) ,... .a^,?)) , 

'By 2.3*2« a ,v), since Q is correct) , 

Because of the definition of the standard innermost 

computation of  >, we must have: 

- t-  i     i  ^ 0^  *• • or^ , . . . .a I for seme n, 0 £ M < « and every i, 

0 £ i <. N, where, for every j, 1 s j in, |at | CX i < N| 

is the Standard innermost computation of a.   for x = c using 

F'x) <= T(F it). 
1 

Case v-a:   If the standard innermost computation of a 

for x = c  terminates v/ith a,  then, for every j, I < j S ft. 

the standard innermost computation of u.     for x = c must 

terminate with some a.,  a. c D and the standard innermost 
~J   J      

computation of Fa.,...,a ) must terminate with a. 

Hence, by induction hypothesis, Vj, 1 < j <; n,  or, ' f ,c) = a., and : 
j  s       j» 
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fa «j,,,,,en)     Induction hypotheai») 

a Definition ol f a,,,,,«)) , 

t.asc v-b.  li the standard Limensosi computation of Q 

fur x - c  doea not Ceminate, then two subcases may appear: 

v-bi.   One ol the standard innermost computations 

of of.  lor K ■ c  does not t< rminate, for some 
J 

j , 1 - j •- n.  T'ien, by  induction hypothesis, for 

that j, W' have: 

~ !'f e\ s « 
j  s 

Hence      tf(f ,c)   yp  by ,' . f .2 a 'v; . 

v-b '.    For every j , 1   j < n, the standard 

innerm •■ t computation  of & for x = c terminates 

uith a, c   C. and the standard innermost 
--J 

computation of F a,,...,a  does not terminate. 

Because ol ihe Induction hypothesis, we have: 

V1'^"'   ^ fs'"-   ^    I -But since :,= F^^ %) 

is correct, we must have ■ Q^.c),.. .»^(f^) .c (D
+
}n# 

Hence,  Vj.l < J < n, 3f f c) r a. c D , and: 
J   s        J 

fg(«jSt.»,«n)  Induction hypothesis 

- (fi Definition of  f  ^a.,...^  ). 
si n' 
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So in both subcases of case v whurc Uie standard innermost 

computation of    for x = F docs not trnninate, wc have 

'ft ,C   x. I 

ihis eonpletea Che proof tor  caia  v, and fur the Leima. 

from this, we can now deduce: 

Theorem I :  for a moiiotonically structured recursive definition, 

the partial function over Dn computed by the standard innermost 

computation is the least .eak iiypoini of the recursive definition. 

Proo!:  lA;t ^ .*,     <■ T(F,X;  by a monotonically structured 

recursive definition, and let  f  be the partial function computed by 

the standard Innermost computation rule using this recursive definition. 

Let c g I>n. 

The standard computation of F(Jt)  for  x = c  starts as follows: 

F c o 

'. = Simp /   ■ F 'c , 

'    = I'subst fa,  = - F.c, 

But the first term of the standard innermost computation of 

T fF.x',  for  x - c  is  7 'F,c) . 

Hence those computations either both terminate with the same 

term, say a, or both do not terminate. 

The previous lemma applies, because  Ffx)  and  r(r,x)  are 

both correct and monotonically structured, and thus we have: 

101 



Hi WtmMkia 

If both computations terminate with a: 

s 

T(r,x)(f ,c) - T(£ ,C) a a; 

If both computations do not terminate: 

f (c) - 0/ » s        * 

"iff ,c  : u; . 
s ' 

In any event,  f (c) = 7(f ,c). 
fli s 

Since c was arbitrary in D",  this shows that f  is a 
s 

fixpoint of T. 

Now, by Theorem ?, since f  is a computed function obtained by 

innermost computation, we know that  f  must be the least fixpoint of ?. D 

Coninents:  1. Notice that W3 have not used Theorem h  in the 

proof of Theorem .  In fact the proof ot Theorem 6 is an alternate 

way of pnving the existence of a least fixpoint of ?, So far, the 

author has not been able to relate the proof of Theorem 6 with the 

fact that tT = lub [?!«] | i > C} , which is known by Theorem 1+. 

< . Theorem 6 tells us that t      is a computed 

function. Therefore, by Theorem 1, we know that  f must be an extension of f 
T T 

or rather: 

T      T 

(Since, ^ e pfn^D)  and  1^ e pfn(D
+)). This fact was not apparent 

from the set-theoretic characterizations of ^  and 4  provided in 
T 

Theorems 3 and \. 

10? 



5 -5 Safe Inneiniost Computations 

This section describes a large class of innermost computation rules 

which also lead to the eat.^.  weak  fixpoint of the recursive definition, 

and which we call sale imifnr.ust.  Both the standard simplification rules 

and the standard ■ubstitutlon rules are extended to provide more convenient 

and/or efficient rules to cümpute the least weak  lixpoint  .  The standard 

innermost computation described in Section 5»5 appears as a special case 

of safe innermost computations.  The safe innermost computation embody all 

previous methods known to Ui to lead to the least weak fixpoint. 

We first describe ehe saic innermost computation rules, then prove 

Theorem y which says that they lead to the least weak fixpoint, 

5•5•1  Safe Simplit n,ations 

A sate sinipli t ication schema is any expression of the form: 

& v A. , A, , . . . , A ; —t B , 

where : 

(i)  each A. is cither an individual constant, or x,     or a term 

variable; 

(ii;  B is either an individual constant, or UJ or a t» mi variable 

which is identical to A. for some j, 1 < j < p; 

(iii)  the equation !(§, ,f , . . . ,P ) ■ Tl holds for all values of 
J ^ p 

■ F. ,^ , . . . ,£ ,T'    ■  such that: 

(iii-1) < E ff, Fp > |  Dom(g); 

\iii-',')     For every i,l^i<p,if A.  is a constant 

a.  then |.   a., if A.  is n  then t.   t m: 
~i       -i    i     i     Ä       =i  ■* 

(111-5)  For tvery i , J , 1 l; i , j < p, if A. and A.  are 

the same term variable, then I, ■ f. ; 
i   =j ' 
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(iii-1.   If B is an LndividuAl constant  b , then t = b; if 

B is x than Tl s a>, if  B  is th« term var;-dble  A , 
1 

^ _ J '_ P • then n ■= f . . 

Comnent:     1c   is  obvious  from  the deiinitiim   that  a  standard  simplilication 

schema  is  a  safe  simplification  «chen»«,     Motic«  that we don't  exclude  twt 

term variables   to be   Identical.      [ntuitively   this means  that   one may  decide 

to  simplify on  the  basi.   thut   two  terms  are   formally identical,   if  the 

corresponding equatioi   hold«. 

A safe  sirplifi. atior,  rule  is  any correct  instance of a safe  simplifi- 

cation schema where  all  the  term variables    Ai's have been replaced  by 

arbitrary  terms     -/s     in such  a way  that    Yi,   j,   1 < i,   j  ^ p,     if 

A    ■  A      then    T    - T.)   and where  B,   if  it   is  the  term variable    A   .  has 
J *        J j 

bier   rep  aced  by     T . . 

Exffliples: 

(a;     All  st  ndard  simplification  rules  are  also  safe  simplification 

rules . 

^    Ü   1    tjhej" A e^se  B   ^ A,   for  the  sequential    'i f-then-else' 

connective,   is a safe   simplification  schema which  is not  a 

stindard one   (cf example   (c)   in  L   5.2,1) 

^    Ü    A    l^Jl    B    ^1^1    B   ' B'   for  the  Parallel   'if-then-clse' 

connective,   is a safe  simplification  schema which  is  not  a 

standard   one (cf example   (d    in     S 5.?.l  ), It  corresponds 

to  the  equation: 

V ll  e{T,F}+,   V ^ ,  e D+:  if    g      then {    else *     -  {_, 

valid   for the parallel   'if-then-else '  connective. 
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(d)  11 '*'  is the ordinary binary multiplication over the 

integers extended by '•>*  IJU  x, we havi' sefn in Kxample 

■'g,' ol  ^  . . 1    that    ■ A » ,  was not a .standard 

simpi i I icat ion scliema, because the corretpondlng equation 

did not hold on the whole Domain of '*'.  lor the same 

reason, it cannot be a safe simpl i t icaL ion schema either. 

A salt1 set 01 simpl 11 icat ion rules is any set ol simpli 1 icat ion 

rules which contains the set ol standard simpliiication rales. 

'■.',.   Sale Innermost Substitutions 

The sate innermost substitutions are innermost substitutions 

performed on certain key positiens, which we are now going to define: 

Petinition:  Let g ',',..., t ) be a correct term.  Let  J be the 

set ol indices corresponding to constant terms, i.e. 

J ^ [1 ' 1 _ J _ P  and O. ■ «.f C}. 

An ü-set   1  ol   the  given   function    g     in  that  term 

is a  set  ol   indices  such  that   the equation: 

|{?l»?2....fJ     m 

holds for every tuple  l-i»!- »■••»I   e Dom,g) such that 

(i)   VJ. J,   5j » «j i 

(2)  I r' J = ^ and V i f It {. • «, 

in (»tier words,  an uj-set   is  a  subset  of  the  indices  such  that,   if all 

the  corresponding arguments  are  undefined,   then the whole  term becomes 

undefined,   for  all  values of  the  other arguments  respecting  th;   constant 

terms. 

Notice  that   the  union ol   two    uu-sets    of    g    in a  term  is  also an 

JU-set    of    g     in  the  term. 
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We   now proct'fd   tu   define   inductively   sits   of   key  occurrences of     F     in 

which  to  perforni   sau-   iimennost   lubstiCuCiom   In   I  correct   term     i: 

(i)   -   (iii '  =   x. ,   c  or ct       no   lubttitution   to   perlorm. 

(iv) i -   %   !. ,a,,      )       select   en .i-set   I  of g in i, 

as discussed  ab.-vc.     To obtain  i set   ol   key  oeeurreacttf of    F     in Q,  pick 

a  set  of key OCCUrrencci  ol    '       Ln  ruh    >:   t!ie     a   's   for  "very     i t   I,   and 

form the union  ( t   them. 

(V) »-   ^   1 'n^ 

-i:    i   '        .,     lor   1       i  _ " are  individual  constants  in C 

then  ttiis  occurrence   Ol     i-     is  a key  occurrence. 

-otherwise,   to obtain a  set  ot  key occurrences of     F    in 

a,  pick   a  set   ol   key  occurrences  ot     V     in  each  of   thr     QL 's,   for     1  ii i  < o, 

and   forrn  the  union  ol   them. 

Comnu nt . 

1)     Notice  tii it   this   is  not  a deterministic  process.     In general,  there 

will  be manv  sets  of   key  occurrences  of     F     in  a  given  term,   according  to 

which     j-set  ol   the  g's  we   pick during   the  process. 

')     Notice   that   in  Case  v we  f'o  not   select   an occurretv e  of     F 

corresponding   to  a  term     f(OLt,tttQ   )   in which   some  of   th      r. 's  arc   not 
in i 

individual   constants     even   though   the   /.'s might   not   contain    F).     Also, 

an    j.     being    g    prevents  the     f    of     F' /    Q  }   from being a key 

üccurrence.     This is  of minor  importance,  however,   since  the definition of 

an innermost  computation    would  not  permit   substitution  in  such a position, 

even if we had  included   it   in the  set  of  key positions. 

Example:     Take       Of =  if  P'F,x    then    A^x)  else  B(F,x). 

'a)     Suppose  that   ' i f-then-eliie'   is  the  sequential  connective 
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Th«n   ii   has   iivt-  j)-«i'ts  in    ;: 

■ 0. (l. I. [1.5). I-,'}. iL   , }• 

So am-  let  ol  keyoccurrcnce« oi    I     JH    P I ,X      will   be a set 

oi  key  occurrence! o)    1     Ln     ••;    similar]., tlic union oi  any 

si't  ot   key-occurrence! ol    i     in    A I ,x      with eny srt  ol   key- 

occurrencea    f    F   in    I K, ■.      will  be i set  ol keyoccurrencea 

o!    I     in     , etc.•• 

b      Suppose now that   ' i t-t hiMi-t ! st-'  is  the parallel connective« 

it   only  has   fout     J--si-ts   now   in      t,   namelv: 

[I.-).    • .:.•■;• i' ..■] • 

Suppose   tiiat   we  have   picked     (    ,'■}      aud   that   aftur   some 

c ompul 11 i on .   Ch<    li-rr; has   become: 

c -   11     ;' i ,.<    then a else  B If »ic 

Now,     if*then*elee'   only  has   one     x-sct      in     g,   namelv   ;1,'j. 

This  means   intuitively  that   computing   in  position   1   alone  or 

in  position       alone   would   be   unsale,. 

■    ■ '     Sale   Inncrrnogt   ■, »input at ior^s 

De.i ni t ion :     A   iafc   innermost   tomputation  of   a  correct   term 

for     x  -  c   ,,  1) usin,   the  recursive  definition    F'x")       ■     ■   I-,x)     is 

■   sequence  ot   terms     I   •.      |      i j      s'ich   that : 

0 ' K'5' \ 

h      For evety k >     j 

bl       ■      ,     la obteined  irom   q ,     by  a^lectins a 
k-f ! k   ' 

safe set ol s ir;p 1 i f icat ions ami applying 
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b. 

Chea,   iii   -Hiv  order,   until   OO morL-   cm   be   applied 

k-t- 

imurri 

ibtained   trat , ♦, 
b\   perfoming 

subit i • itl< na  In  a  set  ol   key 

occur rfu es ol    i     In k^-l . 

Cojgnent. : 

In general,  then   an   »any   iaf(    Lnnerooat  coaputatlooa ol   a slveil term, 

since   at   each   sup.   M   hav<   th«   ch< ice-  ol   which   saic   Mt   Of   simpliiications 

to  pick,   and  *hich   set   ol   kej   ocenrrancea  Ol     F     to  pick.     These  choices may 

vary   froOi   itef  to   Btap,   and  My  even  be   context   sensitiv. ,   i.e.,   one mav  very 

well  decide   to make   th.    choic«       I   key  occurrences  o.     F     in  a   i.erm on   the   basis 

of   ihe  environment   ol   that   urm. 

The   rest   ol   the   Chaptei   i-  devoted   to   prove   that   anv  computed   lunction 

computed  by   safe   in  ermost   computation   is   the   least   weak   lixpoint   ol" 

the  recursive  deliltiMi. 

b •; • •     Theor m 

Subcc'.iput at iou 

l)c li üt ion:     Let     {'     !   1  J       }     ^  •"   in-'.ermost   c... atation. 

A   subcomputatioi  ol   this   c.r   utation   is   a   sequence      1   consecutive   subterms 

0(     |       for    N   ■   i      N   .     ihich fona a coa^utatlon sequence. 

N  can be 1 nil  or infinite, and accordingly, the sub- 

computation will be unite or inlinit      mbCOMputatiOQ is said to 

terminate it it reaches ■ t rm which       idividual constant in C. 

A subcomputation can be fin te and not terminate, in the case whire the 

position corresponding to the subcomputation disappears. 

For example , i1 ; 
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Is  an   innermost   cumputat ion.   thi-n : 

{ej.s ,e,.,r  , g  '•I,B.I    i    ■■'ml   '^'i'' ■'-}    arc 

subcomputatiivis.     The   second  one   is   linite,   hut   may   not   have   terminated 

if      ;.     is   not   an   imiividua!   constant   in C. 

A w» 11 - founded  Ojrdei i n^ on 1) 

• ■ n 
'VL'   now  give   a well-founded,   strict   pr^tial   ordering— on     IJ   , 

denoted by : 

Det init ion: 

'■''~ t &  t X      m    ii   t'1«-'  standard  innennost  computation ol 

F  T     terminates   and   the   standard   innermost   computation of 

f(t     is  a   subcomputation ol   it   which   terminates. 

Comment: 

Let us empl.a:;/.e that the standard innermost computation of  Fvt)  wust 

terminate as a subconputat ion ot  F ft),  It would not be sufficient to 

require that  i t]     occurred within the standard innermost computation of Pyj), 

and that its standard innermost computation terminate.  If the latter did not 

terminate inside that ol  F ~ , we could not guarantee antisymmetry of the 

"A binary relation  over a set  8  is a strict partial ordering if it 
is antisymmetric : 

'Va.b;  a • b and  b < a is false}, 

and transitive: 

Va,ij,c/  a  b and  b • c = • a < c). 

A stric partial ordering is well-founded if it has no infinite decreasing 
chain. 
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relat ion. 

■.c-nuTia:    The  relati eflned   ibc\ i w«;l]   Founded,   itrlcl 

I! 
pan ial orucrjn|    1) . 

Prop!: 

;   v,  ; etry:  trivial .sinct  r  -  Laplici that Che standar-J 

In-., most COÄpUtatlon of F T is strictly shorter than that of 

F f" 

(ii)  Transitivity:  Trivial. 

fill  W. 11-loundcdn. ss :  Suppose we have an infinite descending chain: 

-   T   -v .   Since each tern iz   finite, there must 
1 . ' 

be  an  Infinit«  number  of  distinct   terms   in   the  computation of 

F'~   ]   to  contain   the   infinite   ol     F'~.    .     Hence  the  computation 

of    F ~       does  net   termin.iti-,   hfhlctl  contradicts   the  hypothesis 

"    ■' "   , •   

We  also have   a well-tounded     »-rlCt   partial   ordering  on  the   set  of  terms 

. ver   an   dp'tabet,   namely  the   subterm  relation.     Let  us  also denote   it   by <. 

Therefore,  we  can   torm  a well    [(Minded   strict   partial   ordering  on 

D0    xiTtrms;, which we will   also dtnot«     .  as,  the   lexicographical  ordering 

ibtained   from the   two  previous  ones,    'amelv: 

Y  ■    Wt Q    •,   •   f\t%    ' «0     x  ^lerms}: 

■   7t i      ■     -^.B -     iff    f      ~    or     T = ~    an^    a *   ^   * 

It is a well known result that sue!- a lexicographical ordering is indeed 

a well-founded strict partial order.n^  f it is obtained from orderings 

which have the same property. 

We will need one more definition: 

A ubset S  ot  L,9   is said to be c^ular iff  for every f c ii 
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every v in ,>A+)P wfiich is ^ r is also in S. An intf-preta ion of 

an alphabet is rt'^ular iit all thf given tunctions have regular ilomains. 

Similarlv, a rfcursivi- definition Ll regular itl all Ow given functions 

which  appear   in   it   b£VC   rigular  ihmiains. 

Any   interpntativn   CM   b«  extended   into   a   regular  one   in  a  number of 

wavs ,   and  anv Monotonie   i lit iTpret at ion  can  also   IK'   extended   into  a monotonic 

regular  one   in  a  inimhui   ol   w ivs.     Now  it   is  easy  to   see   that   il   we  take  a 

monotonical Iv   structure!1,   recursive   definition which   is   not   regular  and 

extend   the  given   tunctions   into  monotonic   regular  ones,   the   least weak   fixpoint 

ol   the  recursive  de unit ion   is   not   modi lied.        Because   il   the  recursive 

definition is     h   x       ^   -   V,~   ,   I   F,x    must  be  correct;   therelore,  evaluating 

-   K,x     tor     any     partial   function     f   f.   pi     D    cannot   lead  outside   the  domain 

ol   the  given   functions   . 

We  now have  the  necessary   tools  to  prove: 

Ljmma:     Let   the   interpretation of   the  alphabet   be   regular,   and   let 

f-   x    • ^   -   V ,\     be   a monotonical ly  structured   recursive 

definition.     Then   lor  every    F e  D      and   lor every correct 

monotonical ly  structured  term    Q     tree  of     v..   it   the  standard 

innermost   computation ol     hT    terminates  and  has  the  standard 

innermost   computation ol     /    as  a  tenninating  subcomputation, 

then  any   sue   innermost   computation  ol      I     terminates. 

Proof:    We  use   structural   induction on  the  pair    -^ f ,   i    ■,   i.e.,  we 

prove  that,   il   the  property holds   for  all   pairs  less  than ■   ^ta >, 

then   it   ho;ds   lor     ■   \,  a >. 

We  proceed  bj   case   analysis  on   i. 
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Cases   i^ -    iii   !    ■      x   ,  c  or x.    Thi  property  is  trivial, 

»ecause   in  Casi-     •     -     11]   any  computation of 

Urminatf.-;   at   the   first   ■-tup  and   in  Case   'iii; 

no eoaputetlon ui temlnetot. 

Cee«  fiv) i ^   .' i    . 
- --    ] p 

■t   ua   picl   a   satf   Limeraoit   computation  ol    I  and  assume 

.L   dots   not   terminate       Two  cases  can  arise. 

'•ai'e   [ivij   :    l4  m i      'i '" ,      fof  every  i  ^0. 

Let   us   taki   some     N     sufficiently   lar^e   so   that   all 

the  terminatin/  „ubcemputations  of   ','s  have  terminated 

be lore     N,     sa.     B > 1   ■     Let     I     be   the   set   of  ind ices 

such that the subcenputations of ;., j r I terminate, 

with, say, a .  Then, lor every i in 1 ,  i = a . 
j     -i 

N ■ We  have     ^, =  g   /,..., < 
.»      ~     i p 

Now    |     has  an    x-set   in      i Tor  example,   we have; 

^  ?,,..■ .ir JL     where        r i  t  I •> I a •/ 
P i - j j       - 

.iM- ' x    . 

For it '   '-l ' ' ' ''"-n ii / x , we would have a standard 
M V' 

simpl ifiiationrule     y,   '       . . . , i  '       .3. 
1 p ~ 

This '1 !_ belot.K     to  the  Domain   ol   g:     ^his  comes   from the 

regularity of    Dom g•     and   the   fact   that      I    is correct.     If     f      denotes 

the  least   fixpoint  of    -,     m  knmi  thal      ^^  ) ■ g^ a   )]    ^^  ' 
a

1   " ui     T'   
;i     hence    '  'j a       c  uom g,       :« correct   .     Bu? 

■-Zi>'--.lp        <    ■:'l,... , lp   :     hence        ^ , • • • ,|    • e  Dom'g ,   'Regularity). 
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Now the  set  of  sale   simplification  rules must   include  that  particular 

rule.     So either of  two  tliin^.s  can happen: 

fi)     this   particular   rule   is   applied. 

N ii       Another   rule   is  applied,   say    g'-f.    , ..., N. N 
I '   p   ' j 

In  both  cases,   and  without    further   analysis,   the  hypothesis  ol   Case   (iv-l) 

is  violated. 

So,   in   Jart.   tcr     N   > i    ,   there   is   an    x-set   of     g     in 
N 

Let   us  dc  > i.c   by     |     the  union  ol   those    x-sets of     a     in     Q       which 
N 

are  selected   in I initelv many  times   in  Lhc  safe  innermost   substitution 

process.     J     is  also  an    x-set   ol     |     in    QL,,     and  therefore,  we iiave  an 
N 

equation: 

^i v ; * w 
for  every  tuple J    »     :• e   Dom  g,     such  that: 

vj  c.,!J     «j 

Vj   fc  J ,   ^ .       x. 

Now, since the standard innermost computation of  I  terminates, we must 

have an equation: 

l(C|»«**»{a)   a  for some a f x , (E?) 

lor  every   tuple     <{.,...,!       > «   Dom(g     such  that: »I     -p        ic'- 

•j I K. 5. - a., 
»J   J 

where  R  is the set of indices  j  for which the standard innermost 

computation of i      terminates as a subcomputation ol the standard innermost 

computation ol u. 

:he key point is that  K  J • 0.  Tor suppose there is an ind ex 

I   1  K       J.     Thru,   since     j   - K,   the   standard   innermost  computation  of a 

terminates  as  a  subcomputation 01   that  of     x,  hence,   by  transitivity,  al so 
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as  a  subcoraputat ion  oi     ^   f   ■     But f-a- ■'.,',   and   thus,   by 

induction,  wo  know  that   a.i\   sate   Lnnemost   computation oi      I    must   terminate, 
J 

But,   .since     j   (   J,   the   tubcumputAtlon   oi      '.     in   the   safe   innermost 

computation of      I    doea  not    terminate.     However,      ■■.     is  worked  upon 
J 

infinitely many 'tmes, hence this subcomputatlon is also a safe innermost 

computation.   his La i  »ntradlction. 

Becauso K and    are '.isjoint, and because of the regularity of 

Dom{g , ..e cat) select a tuple   c.,c , . . . ,c > which will satislv both 1 p 

(11)   .in>i    L    ,  ■ .   tpecifyit^: 

(VjcIüK»e.sa. 
J j       J 

[ othorwise     c.  ■ w■ 
J 

Ii      i    o.d  K   irt     ot  disjoint,  which means  that,   tor  some    (X.     two  confutations 

oi have  ttrminatd,  we  kiow  that  the  final  term must   be  the   same  in each 

case,     a.   . 
-J 

c, ,L   ,. . . ,c       < <    a. .... ,3«       and  therefore,  <c,,... ,c  > belongs i P 1 P L p 

to Don g   ,  bv re^ularitv    5*1    lootnote or  previous  page'.     Hence <c, ,c   , .. , ,c > 
IS p 

satisfies  El   and  E   ,  which   is  a contradiction. 

Therefore  this case oarnot  happen. 

Case '.iv-L >     '    ■  «(a.    a    )     for    0 <  i ^ N and   *„..     is  the 
  l~i p —      ~ N+l 

final  terTi oi   a  safe  simplification of tor  some 

j,  or u>.       It  cannot  be an  individual  constant,   because 

the  compotaticn cf    U    would   then terminate   . 

So there   nest  be  a simplification  scheme 

|  A, A^,. . . ,A  ) -, B 

correspor  ing  to  an equation 
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idi.fg !p)  n, («3) 

where: 

!j 5M • I Doin(g) 
P 

A. 
J  ~J    • .1    J 

/ Vji 1 < J < Pi   / A; = ^;    ~ ,   a 

V.j.k, 1 __ j ,k 

A. = UU  ■> I, 
J   ~     M   »• 

p, A.   =  k.    ^ ■ f. .   ^  f 

ii  B ■ A,  then ^  ?. 
) "J 

i I   B ■ tt)  then  Tl -^ U). 

Let us call L the set of positions j such that the subcomputations 

of i.     have terminated in the safe innermost computation of OC,     For 
J 

j e I,, we have J. ! a . . 

As   in  the  previous  case  equation   (E2)  must  also hold.     K     denotes, 

as   in  the  previous  case,   the  set  of positions  such  that   the  standard 

subcomputations ol      *.     have   terminated  ir.  the  standard  computation of    a. 

Now  let  us  choose d   , ... ,d     >    in  the   following way: 

Vj  ff L U K,     d.   -  a. 
J J 

Vj   ^  L   -  K     if    ai       ^     for  some    k  e  K,   then    d.  = ^ 

otherwise ,     d .  = w. 
J 

N N We observe  that  if        ' ■   ~   X     anc*    "K e K,     then the  standard 

innermost  computation  of     /.     must  terminate.     (The argument  is  as  follows: 

since    k  e K,   the  standard   innermost  computation of     L      terminates,  and, 

by  induction hypothesis  any  safe  innermost  computation  of     a.      terminates. 

Hence,   that which  leads   fron    JL      to    • l     must  also  terminate,   and  so 

N N does  the  one which  leads   tram    a.     to    a.  = txT .     But   if  a  safe  innermost 

computation of    cc      terminates, a  fortiori the standard  Innermost one will.) 
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Hence d, s a, , and wo observe that: 
k   k 

. H   .  d  '  =■'  • a  a  ■ and therefore 
r  ' P      i    p 

< d   , . . . ,d    >e  I>oin(g),   and    •    d   , . , , ,d     >    satisfies   {EP). 

Now we  show  that d ,d     >    also  satisfies   (Ej) with    T] •   (B. 

■a)     First ,   ii     Jet       d;       a 

J J 

h^     It a r ju,  x  cannot oe equal to 'i  for k e K, 
1 '      j  -   J « 

by the above argument (the standard innermost computation of u) never 

terminates^, fnd a fortiori    j  cannot be in K. 

So da,. 

f   \      m N    N 

(c)  Suppose   . = i^. 

(el)  If either  j  or k  is in L,  then the ether is, and we 

have d . = d. - a ^ a. .  So assume now that j t L an^ k |; L: 
j    k     i    K 

(c?)  If j e K and k e K, then both standard innermost 

J 
computations of a.  and  t terminate with the same result, and we have 

dj S dk : aj H *k' 
(cj)  If j r K y L and k e K  (or the symmetric case), 

both standard innermost computations of a, and a^ terminate with the 

same result (by the same arpument used in the proof that <d^,...,d > 

satisfies (12)), and we have forced  d. ^ a H d  in the definition of the 

d 's. 

[ch)    If j 4 K U L and k ^ K j L. Then either there is an 

i in K such that CT = QT (in which case also of = cT and d = d , 

d = d . so d   d, ) or there is no such I,  in which case d a d. = <i). 
p   i '     j   k7 J   K 

So ^'d^d , ...,d   certainly satisfies (E3).  Now to show that 
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the corresponding right hand side in E; is ID , we assume  B is not uu 

N 
(in which case it is obvious) ; then  B = a  for some v, 1 :_ v ^ p. 

First, v does not be long to L. .: K: v is not in L because otherwise 

B would be a constant, which is t-xcludcd.  It is not in K either because, 

by induction hypothesis, the safe innermost computation of Q  would then 

N 
terminate:  but then so would that of Q , hence that of "N . .  hence 

that of  ■•,  which is a contradiction. 

N   N 
Furthermore, there is no  k e K such that Of ■ Of ,  for otherwise 

the standard innermost computation of i      would terminate, by a previously 

seen argument , and again this would imply , as above, that the safe innermost 

computation of  I terminates, which is a contradiction. 

Therefore d   x, which in.plies T'  uu • 
v 

Thus, we see that: 

g(d  d )  x  from  EJ) 
•     ? 

^   a ^ 0)   from   (B8) % 

which  is  a contradiction. 

This proves  t!.e  property   for Case  iv. 

Case   (v) :    O • Ffo,... ,a ) 

If the standard innermost computation of a terminates with a, then 

for every i, 1 ' i < n, that of cr. terminates (with a.), and chat of 

F(a1,...,a ) does, with a. 

Any safe innermost computation of Qt is of the form a. = F(ü! , ...,a ), 

in which all the computations of a., for  1 < J < n, terminate with a , by 
J ~1 

the induction hypothesis. 

Now - a, , . . . ,a    is less than -. F. I > in our ordering on D , 
]     n =i    Jn 
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since  the  starulan!   innermost   computation of    I   a     . . . ,a  )     occurs  as 

terminating   lubcaoputation of the  standard  Innermost  computation of 

■Ä1 -^n 

Let us abbiL-viati1, as usual,  a. a ■ by a. Then the pair 

4fi ^(*):> is strict Iv less than the pair   f.Q : in our order, since 

Ä < F.  Hence by Induction hypothesis, oui property is true lor Che pair 

< *! l.a) >.  Since the standard innermost computation ol  F ä) terminates 

and obviously ha;  i a  itself as a terminating subcomputation, we know 

that any sale Innemost computatior. ol  F(a) will torminate. 

But any safe innermost computation of Ct hits upon a safe innermost 

computation of F a , hence also terminates. 

This disposes of Ca^e v and completes the proof. Q 

From the [,enma, we can conclude: 

Theorem ,:  For a monotonically structured recursive definition, the 

partial function over D  computed using safe innermost computation for any 

regular monotonic extension of the recursive definition is the least 

weak fixpoint of the recursive definition. 

Proof: As observed above, if the recursive definition is not regular, 

one can extend it into a monotonic regular one witho'i!. modifying the least weak 

fixpoint. 

Let  fsa£e he any computed function of the recursive definition using 

safe innermost computations, and  f  be the function computed with the 

standard innermost rule. 

Applying the above Lemma with a = F(f)  inmediately gives: 

f < f  , . 
s   safe 
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Now,   since     f    =   (      by Theorem 6,   (f    denotes  the   least   fixpoint  of  T) ,  and 

since     iSii{e   is   an  iniunnost   computed   function,   Theoreni 2   shows   that 
A 

'safe =   '•    * a 
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(.ONCLl'SION 

In this work, we have presei.ted a model for'recursive definitions' 

which enabled us to prnve general results og the relation between 

ccmputed lunctions and lixpiunts, an<l wt have given sumo fi.ypoint 

computat it>n rules for a certain class of rotMrsive definitions. 

UV now suggest some possible directions in which iurther research 

could possibly extend this work: 

a1     In Chapter S. In addition to ehe standard innermost computation 

rule we gave a wide class of computation rules, the safe innermost rules, which 

also lead to the least weak iixpoiPt ol the (nonotonitally structured) 

recursive definition.  We have given no such rules for the least strong 

fivpoint,   in addition to the full computation rule.  There is clearly 

a need for such rules, and as a matter of fact Vuillemin 1772; has 

recently found such rules, which he calls "safe computation rules"; 

he also gives conditions for such a rule to be optimal. 

fh) The domain  D  of our interpretation has a particularly 

simple structure: the partial order on D  has only two levels so to speak, 

with g being less defined than every element in D, and every elenent 

in D only related to itself. 

It would be interesting to see how the computational part 

of the theory extends t  domains  S with a much richer structure, for 

example partially ordered sets which have a least element and are chain- 

closed (in oiier to guarantee existence and rood properties of fixpoint 

of continuous functionals . 
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(c)    Scott  1 « >] presents a mathematical theory of computation 

of higher tvpes ul objects.  He suggests that it would be worthwhile to 

establish that the cumputable objects in his sense are also computable in 

the usual sense ol Church's Thesis.  The present work establishes the 

fact for objects sj low types  partial functions and functionals).  It 

might be of Interest t.> investigate if and how the computation methods 

presented here could be extended to objects of higher 'vpes. 

''d     Syntactic extensions of the'n-t. ur si ve defi nitions'might be 

interesting to investigate.  For example,  we might consider an 

expression ol the form: 

rj.   F.X"! . =    pi .X 

where    'ind  - are two arbitrary terms, to represent a recursive 

definition.  In the case where such dctinitioiM possess lixpoints, 

is there ■ general i omput ,it ' on inechar. i sm tiiat will compute one  or 

several, of them'. 
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A. Introduction 

In this Appendix, we derive fixpuint properties of raonotonic 

and contin'ious mappings over partially ordered sets.  We then 

apply these propi-ri ies to sets of partial functions, after 

verifying that theM sets indeed satisfy the required conditions. 

The first result 00 monotonit mappings is a slight general- 

ization of ■ result mentioned in an unpublished paper by I'ark 

1 ' '  .  The result on tontinuous mappings  generalizes a 

Theorfin due to Kleene  1 '' ^ ).  The second result on monotouic 

mappings is a mild generalization of a result due to Tarski 

1 ■ 5)«  0ur proof follows that given by Park (1969)«  3eki^ 

l'/i 1)     and Scott  IT1  contain related work. 

B. Partially ordered sets 

ii. 1  General definitions 

An order ing on a set M  'or partial ordering  on M) 

is a binary relation on M,  denoted •', which is: 

i)  reflexive, i.e.:  VxrM, x*x , 

(ii)  antisymmetric, i.e.: Yx,y GM, x<yAy^x=jx = y, 

^iii^  transitive, i.e.: Vx,y,z CM, x*yAy<z=sx*'z . 

A strict ordering on M  for strict partial ordering 

on M) is a binary relation on M,  denoted <, which is: 

(i)  strictly antisymmetric, i.e.: 

VX»y r M,x ^ y A y "^ x  is false, 
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(ii)       transitive,   i.e.  Vx.y.z GM,  x<yAy<rz^x-<z   . 

It   in  easy  to  traiicfonn a  strict  ordering nn   a   set    M     into 

an orderillB   On    H     by  adding  tho  pairs   f     x,   y. X 6   M^   and, 

vict'-versa,   to  obtain a   strict   ordering   fron an  ordering by 

removing  (he   pairs     ■     x,   x y r  Ml. 

in   the   stqacl,   we  will   be mostly  concerned  with  crderings 

and   ordered   sets. 

An  ordered   »ej ,   or     parlialiy  Drdered   set     Is  a  pair 

■   M,   *      ,   where is  ■   set   and  *     is  an  ordering  on    M.     When 

BO confusion  can  arise,  We   himply  denote  an  ordered   set 

•    M,   -        by     M. 

An ordering     JP a set    M     is  total  if: 

- •., v  t   M,  x   ■   y  or  y  ^  X   hoi's. 

Let   M, -    be an ordered set,  and K c M be a subset of M. 

The restriction of *  to K  is also an ordering on K.  K is a 

chain  in c M, «    when this ordering is  ital. 

Let <H$ <      be an ordered set and A - V  be a subset of M. 

We say that an element u € M such :hat: 

V a € A, a < u , 

is an upper hound of A in M.  If, in addition, u € A, then u is the 

greatest element of A. There can obviously be only one greatest element 

of a set. 

Simiiarly, II there is an element £ € M such that: 

V • € A , /- * a, 
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then  / is a lower bound of A in M.  If, in addition, * G A, then / is 

the Least element of A. 

When the set of upper bounds of A in M  has a least element 

we say that it is the least upper bound  of A in M, and we denote it 

lub'A'.  Similarly, when the  set of lower bounds of A in M has a 

grcatest element, we say that it is the greatest lower bound  of A in M, 

and we denote it gib A). 

When an ordered set • M, *    is such that every chain in M has 

a least upper bound, we say that it is chain-closed. 

B.2   Monotonicity. Continuity. 

Let  f be a mapping over M 'i.e. a mapping of M into M), 

For every subset A . M,  f'A denotes the set ff^x) | xc A}. 

An element m c M is a fixpoint of  f  if it such  that 

m ■ f'm). When the set of fixpoints of  f has a least ele»Eent, we 

say this least element is a least  fixpoint of f (necessarily unique). 

Let • M, ^  be an ordered set. A mapping f over M is 

■onotonic when: 

VX,y e M, x < y => f(x) < f(y) . 

Let ■' M, < ^ be an ordered set which is chain closed. 

A mapping f over M is continuous when, for every chain K cM, 

faub(K)) = lub(f(K))  , 

where this is interpreted a«' meaning that the right hand side must 

exist and be equal to the le :t hand side. 

As we noted in Chapter h,  continuity z» monotonicity. 

125 



B.5   Ordinals. 

In onior CO prove the first Iheorom in the next section, we 

need a lew tl«Mnt«ry properties of ordinals, which we briefly recall 

here, refenins th. reader Lo standard teyts for ■ c.nplete treatment. 

(See for examplf :  Halnoi  1 *' ,  Suppes  Id. (), 

We dennfi.     the  strict  total order relation on the 

ordinals. 

An ordinal M     is the set of its predecessors  in that 

relation.  An .rdiiul can be cither C, or the successor of another 

ordinal a      denoted  v + 1: in that case, every ordinal smaller than 

a + 1 is either JT or smaller than »), or a Halt ordinal. 

Let 9(0) denote a property of an ordinal a-     If there is 

an ordinal  a  such that (p( . , then there exists a least ordinal 6 

such that 0 9).  Least Number Principle) 

The following induction principle, called transfinite 

induction is valid on the ordinals: 

If for every ordinal a,    ^(B) true for every | < « 

implies 9
fa),    then cp( , holds for every ordinal a. 

Cardinals an representatives of equivalence classes among 

ordinals, denoting their size. To every set A there is a cardinal 

mmber associated, denoted  | A |, which is an ordinal equivalent to A, 

where equivalence here means hiving the same size. Given any cardinal, 

say I A I for some set A, there Is another cardinal strictly greater 

than it, namely 2'AI = | <?>; !,which is the cardinal of the power set 

of A. 
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B.1+   Least Upper Bounds 

In this section, we consic r partially ordered, chain- 

closed sets with a least clement . 

B.». . 1   Monotonie Mappings. 

We establish that every monotonic mapping over 

such a set has a least fixpoint, and give a characterization of that 

fixpoint when the mapping is continuous.  The partially ordered set 

will be denoted < M, *  , or M for short, and its minimal element Q. 

Let  f be a monotonic mapping over M. 

In the first paragraph, we show how to generalize ehe familiar 

Kleene sequence r., f(0)i •••. f (())»••< and define ^(Ci)     for any 

ordinal a. 

In the second paragraph we select one particular fa{Q)    in 

a suitable way, and call it  sf. 

In the third paragraph, we show that  s  is the least fixpoint 

of f. 

Definition of f (0) for every ordinal e 

We give an inductive definition of f (Q) by; 

Definition: 

(i)  if G = o then fe(n) = n ; 

(ü)      if c = 6 + i then fe(n) = f(f6(n)); 

(lil) if r   is a  limit  ordinal,  then fe(nx  = lubff^fn)   |   o < e}  . 

We will give here a  Justification that  this definition indeed 

uniquely defines     r ffl]    as an element of    M  for any ordinal    e, and 
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B     V that this mapping is monotonic, in th'- sense tint  0  v ^ f (0) <  f (Q) . 

Justification: We prove that, for ovcry irdinal r, tiie property 

«(e)  holds, where: 

^O   I " f( ,/ is well defined and, >'Q  r, f6,^:.) *' fG(0)" . 

The proof is by cranslinite induction, i.e., we assume c!oO  for every 

a '"■ C    and prove 5 r . 

Tliree cases arise: 

(1) C = C :  f '-•   ..  is well defined, and there is no ordinal < 0, so 

the .second half of  --'jj is vacuously true. 

^11^ C = c + 1. 

Then 1    m t{t  (n)) ^s a well defined element of M , 

since  1 (fj) is a well defined element of M and  f is a 

mapping over M. 

Low let & ^ r, show f&fj < f fi). Since 6 is the 

pndecessor of c, we have ß s 5 , and we know that 

■s  5) holds. 

We can distinguish three cases: B = 0. B = y. f (-•,   6 < 6 

(«)    B = = r 

a 
Then fD(Q) ■ fj and, since O is the least element of M, 

fj < fe(n) trivially, 

(k)    8=6^0. 

Then  6 has a predecessor y,  and we have: 

fV(n) < f6(0), by ^(6) . 

By nonotonicity of f, we have: 

f(fY(n) < f(f5(n)) , 
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i.e.  f^"1 (Q) <  f6+1(n^ , 

i.e.  fp(Q) <  f (ft),  since & = f = V + 1 and e = 6 + !■ 

(c)    B < 6 

In this case, we know f (fi) < f (o) by CD(6), and 

we have established  f (ft) < f (ft)  in cases (a) or (b) . 

So the property follows by transitivity of <• 

(iiiN €  is a limit ordinal. 

Then f{fi)   ■ lubff0^,) 1 a < G} . 

We want to show that K = Ha{0.)   j » < *] is a chain. Let 

Ofti < €• Since the oruinals are totally ordered, we have either 

a < ß Off f < a or a = 0« By induction hypothesis we know that 

.5(a) and 9(9) hold. Therefore, if a < p, we have fa(^) < fe(fi):. 

if 0 < a,  fB(fi) <  «0r{0), and of course, if 0 = a , £*(«) = f B(n) , 

because of well-definedness, henco fafQ) < f (0) because of 

reflexivity. Hence the order is total on K , and K  is a 
£      G 

chain. Since M is chain closed,  lub(K ) is a well defined 

element of M, and so is f(n). 

Now the second part of ^(e) holds trivially, because if 0 < e 

then f0(r;) G Ke  and therefore: 

ß       G £ 
f (0) < f (n),  since f (fi) is an upper bound of K . 

So cpfe) holds for every ordinal 6, which justifies the 

definition of f (ft) and proves that: 

for every ordinal 0,v;  0 < y =» ^(ü)  <  fY(n) . 
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Construction of  s f 
The key point is that the E (fi) that we h;ive defined in the 

previous paragraph cannot be all distinct.  Indeed, since f (fl) € M 

r 
for every ordinal  ;, there cannot be more distinct  I (Q)  than there 

are distinct elements in M.  If we take r sufficiently large so that 

its cardinal is greater than | H {i then there must be two ordinals 

Q       a 
a.ß •'. G  such that  f (fj) ■ fp(0,;. it   la enough for this to take an 

ordinal equivalent to ^<M), where ^(M) de utes the power set of M. 

For the purposes of this discussion, let us call conjugates any two 

distinct ordinals  ,,e such that f0''/,"   = f Q),  and let  P'a'  be 

the property "Q has a conjugate". We know that  P{€)  is true for 

the e  that we have taken abovej and therefore, by the least number 

principle, there must be a least ordinal tnat has a conjugate.  Let 

us denote it G.« 

Then we set  s - f fU;     and this completes our construction of 

v 
Theorem. 

If M is a partially ordered, chain-closed set, which has a 

least elanent, then every monotonic mapping over M has a least 

fixpoint• 

Proof. Let  i  b. a monotonic mapping over M. We pn-ve that 

s ,  as defined in th( previous paragraph, in  a least fixpoint of f. 

^a1   s is a fixpoint oi t. 

c f 
We have  s, ■ t     '  l)• wfc want to prove sc -   f{st)t 

i.e., f f(Q) ■ f   (D)«  
,'et > b6" a conjugate of C 
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We have f f(Q) = fx(.Q) and e < \. 

If \ = £    + 1 ve  are done. 

Assume \ f £f -^ 1.        Then ef + 1 < A. Therefore, we have \ 

fCf(Q^ <  f"f + 1{Q)  <  f>-(Q) . 

But  f  (l/i  =  f    (0),     so,by antisymmetry of <,    we get : 
Gf 6f +1 

i f(n)  - f f  (0). 

^b)   s  is the least fixpoint of f. 

Let m be a fixpoint of f.  We want to show s < m. 

To prove this, we will show that, for every ordinal e, 

t{W< m. The proof is by structural induction. 

(1)    c = 0. Trivial, since Q < m for any m e M. 

(ii)    r = 5 + 1.  By induction hypothesis f6(n) < m. 

By monotonicity  f(f5(fii)< ffra). 

Therefore  f (Q) < m,  since € = 6 + 1 and n is a fixpoint of f. 

(iii)    C is a limit ordinal.  By induction hypothesis, 

Va < C,  fa(n) < m.  By definition of fe(fi), we have 

fG(n) ■ lubK., where Ke = ff^ft) | a < e]. 

By induction hypothesis, m is an upper bound of K , and 

therefore  f (n) < m. 

In particular,  if we take € = 8f, we obtain: 
sf 

sf = f (0) < m. 
□ 

B.i+.t'  Continuous Mappings. 

If the monotonic mapping f that we considered 
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in paragraph B.h.l  is now continuous, the least fixpoint has a much 

simpler characterization than before,  in fact we have: 

Theorem: 

If M  is a partially ordered, chain closed set which has a 

least element  j,  and if  f is a  continuous mapping over M, then the 

least fixpoint of m is lub[f1(Q) | i nomuyativo integer"}. 

Proof:  The results of the previous Eo-ction apply since if  f is 

continuous it is monotonic. 

We have shown that, for every fixpoint m  of  f and every 

ordinal a,     f
<v(::) * m. 

In particular, if sf  is the least fixpoint of  f,  for every 

non negative integer i,  f1     s . 

The first infinite ordinal is x,  where a, - ft j i non negative integer} 

• fl \ 0 *i <m), 

and we have also  f*(n) < sf, where, by definition of f'J,fo): 

fW(r)   = lub ffV..)  | 0 « 1 <«), 

Let  K = ff (Q) ( 0 < i ' m).     By continuity of f, f{lub(K)) = lub(f(K)). 

We have: 

lub! f'K ; = lubff1 + l( ) | i + 1}. 

But f(K)  = (f (O) | 0 ■ i '- a } > 

and therefore  lub (f(K)) = lub (K). 

Hence :       lub(K) ■ fflub^K)) , 

which means that lub(K) = f ( ;) is a fixpoint of f. 

Hence s * ^(n) . 

Therefore  s ■ f*(n) = lub(f (Q) | i non negative integer]. 
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B"5    Greatest Lower Bounds 

If the partially ordered set M now has the property that 

every nonempty subset of M has a gib in M, then monotonic mappings 

over M turn out to have another interesting property: 

Theorem: 

If M  is a partially ordered set in which every nonempty subset 

has a gib in M,  then every monotonic mapping  f over M which 

has a fixpoint has a least fixpolnt  s  which is such thct: 

sf = gib fm P M | f (m) < m ] . 

Proof:  This proof essentially follows Park (I969) in his proof of 

the Knaster-Tarski theorem. Since f has a fixpoint, the set 

Cf = fm e M I f(m) < ml  is not empty, and has a gib. Let us temporarily 

denote  lf = glbfC ). 

'a)    lf is a fixpoint of f: 

For every lc  Cf, we have lf < iand, by monotonicity of  f, 

f(lf) *  f(f).  But f(/) < ; since i e Cf, and therefore 

f(lf) < /•  Hence f(lf)  is a lower bound of C ,  therefore: 

f(lf) < lf. (1) 

By monotonicity of f, we get from (1) that f(f(l )) < f(l ), 

which means that f(lf) G Cf. 

Hence:     lf <  f(lf) . (2) 

(1) and (2)  imply that 1  is a fixpoint of f. 
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'b"1    1   Is the least fixpoint of  f: 

We know that  I  luii a  fixpoirt.   so the set of its fixpnints 

is not enpty «nd ther«for« has a ^Ib lAlch W« call temporarily 

m  . We do not ;MI"W yet th.it  m.  is a fixpoint of  f). 

Since the l«t oi   fixpoints of    is included in Cf, the  «Ib's 

of these sets aiv in the following n-lation:    lf * mf. 

But,  by  a  above  1   is a fixpoint uf  f,  hence mf 4     lf. 

I here lore we have; 1, ~ mf   • 

A suffieient cwndition un M  lor I monotonic  f to have 

a fixpoint was |lven in l«Ji , nami ly that M  be chain-closod and have 

a least clement. 

This previous theorem provides an elegant proof for the following 

corollary: 

Corollary   L«t  M verify the hypoth. ■ L - of B.( , and let f^f , 

be two monotonic mappings on H iritl) fi-:points.  Call tj  and s,  thc.r 

least fixpunts.  Then if  (*■ € M  t^ m < t^m)]   then s1 < s^. 

Proof.      From the hypothesis, we have in particular ." 

fl '>,- - ,-S2) ' 

But  f,/s |  •,«   Hence   f 1 
s  »' s , • 

s < •  since s,   ■ gib C- ). 
flenc.e  »^ € C{     ,       and, therefore ^ < *       since ^ - gio ^ 

a 
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(- • Partial   Pugc^lona  and   tlu'   Kx Lens ion  Relation 

In   this   section ui    thaw  how  the   set   ol   partial   iunctions 

from a  domain     S     Into a   rangr     R     can  be   partially  ordered   by  the 

extension   relation,   am!  wr  apply   the   result!   of  Section   B   to  this 

structure. 

i'. 1 Del inili uns 

Let S, k  be non-empty sets and %      be an element not 

in  K,  representing the "undefined" element.  We denote  fcjftt]  by  R+. 

A partial function oi     S  into  K is a mapping of S  into  K+.  We 

denote  pf S -»R) the set oi partial functions of  S  into R. We 

abbreviate  pf S . S  by  pf S)  and we call a partial function of 

S  into  S a partial function over  S. 

II f  ' Pf S ■ R\   we say that S  is the domain  of  f; 

for every x c s, the tamgß  of  x by  f  is denoted f(x ;  we denote 

■  the equality relation  on R ;  if t(n)   l x  then  f  is said to 

be undefined  at  x,   or  f *]     is said to be undefined';  if 

f ■ x p  T,  then I   is ^aid to be  defined  at  >:  ''or f x, defined) ; 

iff  is defined for .very x C S,  then  f  is said to be  total; 

if i     is undefined for .very  x ^ S, -hen f  is the undefined  function, 

denoted Q, 

Let  f .g <- pf'S -, R] .  Then: 

(•)     f and g are said to be equal,  denoted  f = g, 

iff,  Vx € S,  f'x;  K x .  [i.e., either both  f(x)  and  g'x) are 

undefined, or they are bdh defined and equal as elements of R] . 
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(b)    g  is h.aid to be an gxttntlon oi      f, denoted  f < g, 

iff,  Vx < s,   i  x / i  t f'x) = g x .   i.e., wherever fx) is 

defined,  g xN must bo equal to it, am! therefore also defined). 

Note that  f - g  iti   f * g amJ  8 •  f« 

'An equivalent way of dc' : ing the extension relation is 

+ 
to introduce a partial ordering »' on    by: 

Vy C R ,   x •< y  and y «. y, 

and then to say that: 

Vf.g € pf'S -« R\ f * g  g is an extension of f o y v e S ,f(x) < g(x)] . 

The extension relation is easily seen to be: 

(i)    Reflexive (i.e.  Vfrpf'S  R^.f-'f; 

(tt)    Antisymnet.ic 'i.e.  ff,| I p f S -, R , f • g and g < f =» f = g) ; 

(ttl)    Transitive  i.e. Vf ,g,h f pf'S -t i), f *' g and g < h a f < h) . 

Therefore, <     is a partial ordering on pf'S -»R). 

We are now going to study tho properties of pf^S -» R) 

partially ordered by <• 

C.2    Properties of sets of Partial Functions 

pf'S -.R. has a least element 

It is immediate that fj, the totally undefined partial 

function, is a least element in pf(S -»R), i.e., that : 

"f £ pf'S -. R),  :. < f. 

136 



p f  S   -. K,    is   ihaln-iloaed 

Prooi :        Let     K    . pf   S     • R       b«  .1   chain.     Let      t    ,   1      '   R, 

and     let   x G   S  be   luch   that     f.     am!   f       arc  both  defined  et     x«     Since 

>)r »     is •  total  ordering    on    K,    we must  heve i-itlur  t    »     1 

f    •   1   .    in tlther  ciisei     t.   K        1    K  ,    by definition of 

Using this prop« rty, ne can defiiu   1 pertie]   function    I'      in 
K 

pf  S  -. R       a.-,   follovi : 

x £   S     :     rL.   v it  If«   K     luch  that   f   >.     /   »   then   f'x 
I J 

ntlierw1' M   1 

Because ol the )pening remar'r , if tht-r«.' are sovcral  f' .s  in K 

s^ch Uiat  f >  /     .t doi-s not matter which oni we pick to define 

U  x,  since they hive all the same value at  x . 

We wart to ■hot    I., ■ lub K) ' 
P. 

a  U  i> an upper b 'una of K. 

Let   f '    K     and   ■.       S<     %SSWMM     1 

Th€ 1 •■ lore : 

f f f K,     f ■ 

L'K,     üj,   x ix 

x- hen,by  deintion  of 

b"     U       li   the   least   upper   bound  o*   K   . 
K 

Assune     g     : s  ai  upper   ho>,rd   of  K.     1-et      •   6   S     and  assjme 

Uv'x.   ^ 8>«     Theni   by  definition  oi     .    ,     there  exist-.     f C   K     sail. K K 

that     f'x     /   1     ind     U   'x.        t   x   .     .Since     f   -   g,     we  alsj  have 
r 

{(%)   ■  |(x).     nurefore     IL       ^. 
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Kvery  non-empty   subset  of  pf.S -» R)  has a RltH 

Proul ■     i.et  N C M(8 -«R)i     M  ^ 0« 

Let   us  JcliiH' x       C     pf(S    . R1»  by: 
M 

| if Hz r   K such that (V f € M)(f(x) = z) then z 

(_ otherwise  yj . 

M  is a partial function  from S  ir'.o R,  where M f  ^, because the 

z  of the definition is then unique. 

We show that  £^ ■ gib M): 

(a) L.  is a lower bound of M. 

From the definition of t       it followi that, if ^(x1  is defined, then 

V f G M, ;w x ■ f'x).  This unpltos  that  V f G M, / <• f. 
M M 

''b) L.    is the greatest  lower bound of M. 
M 

Let    be a lower bound of M.  Let x € S and assume l{x)  ^ 9«  For 

every f G M, wc have t  *:  f,  and so  £(x) ■ /'x).  Therefore there 

exists a  z as required in the definiion of  £^(x), namely 

2 * !(«)•  Tiius IjfCs) ■ i(»)«  TM« implies  ^ •1'' 4. for every 

lower bound  of M. 

□ 

Therefore we see that pf^S -. R} structured by the extension 

relation verifies all the properties that we need In order to apply the 

flxpoint theorems of Section B.^. and 1,5•  We will call ■< mapping 

over pf^S -» R) a functional .  Combining the three results, 

J 
For I R I • 1, the empty subset of pi 3 -»I) does not have a greatest 

lower bound in pf S -* K),  because th. re is no partial function in pf(| -»R) 
that Is an extension of all the Othftr««  In fact, this Is the only property 
that pf'S -.R) larks in order to be a complete Inttice, (since it Is sufficient, 
for an ordered set to be a complete lattice, that every subset of the set 
possess a gib). Scott (15^0) structures pf'S -»R) into a complete lattice 
by adding a "top" element, which he denotes T, extending w by \ji  rpf(s-» R)u{R}, 
f <T. Then T= gib ?i;. But this is unnecessary for our dievussion In this> 

work. 
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we can state: 

Theorem:   Every monowonic functional  T over pf(S -»R) has 

a least fixpoint  s^ which is equal to glbff c pf(| -»l) | f{f)  < f}. 

If, in addition,  -  is continuous, then: 

s = lub [T (n) I ' non negative integer} 

C.5.   Properties of Sets of Monotonie Partial Functions 

If we uave a partial ordering on S, which we denote •;, 

and if we take the natural partial ordering *, on R  defined by: 

V y C R , ix, < y    and y • y,  we have the natural definition of 

monotonicity, namely t c  pf S -♦ R)  is monotonic when: 

V x,y c S,  x •.' y =» f(x) * f(y'. 

Let us denote mf S -»l)  the set of monotonic partial 

functions of S  into R. 

We are going to show that mf( S -* l.      also satisfies the 

basic properties needed to apply the general theorems of part B. 

mffS -» R) has a least element 

r
l    is obviously monotonic, and is therefore the least element of 

mf(S -. R). 

mfrS  ~»R) is chain-closed 

We will show that if K is a chain of monc onic partial functions. 
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the   lub        \Jt     of K   In  pf(8 -,R)   is raonotonic,  which   implies   that 

mf S    .R     is  chain-clost-d. 

We  have   seen  in  section  (J.     that: 

■•;  x c   s   :   UK(x) 
If    3f r  K    such  that   fix)  ^  M then  f(x) 

oLiierw^so     ,x   . 

Let x,  y G  S     such  that  x    «.  y.     Assume    U    x^     is defined.     Then  there 

is an     f     in    K  luch  that   f(x)   ■  U    x)  ^ &,     Because K   £ mf S --k),     f 

is monotonic  and  Lht-nfore     f x)   ■  f'y    / a'.   Hence,  applying again the 

definition of ,    we  see  that [y)   -  fy)  ^ w. 

Therefore we  have    ü«(x)   4 m   5 L
'K'

X
'

!
   ■ ^K**   ' 

K 
i.e.     ÜL  K)  •■  T, 'y   ,  which  shows  that  ü- f mf'S -»!). 

Every non-empty   sublet   ol  mf.S    .R'   h.is a >4lb   in mf'S --> R) 

We  show that     L.  M     =      f if   1c € R       uc'i  that   (v  f C N)   (£(«)••)   then z 

I otherwise 

is monotonic. 

Let x, y C S  such that x < y.  Assume LXK)  f  tu« 

Then V f r M,  f xN   ^M 
y  r   i-   •     Since every f in M is monotonic,wo 

also have: 

e € it t f (x) ■ t(y) i H . 

Hence, by defin tion  f  >,,, L.  y    fv/x •  vhich shows monotonicxty of 

Therefore m*" S . R)  satisfies the hypothesis of the theorems of 

Part B, and, combmi ^ the results, we can state: 
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The u L fm:        Every ■OBOtonlc   functiuna] ivcr ml   S    ^K^   has  a 

munotonic   K-ast   Cixpoint     s       which   Is t-qual   to J 

Klb   ' t    ■   mf   S    , RM    •   1     <   fl . 

If,   in add iti.»n,     -     is   continuous,   then: 

s     ■  liib   f   T     ((j)   |   i  non negative  integerl 
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APPENDIX   II 

SYSTEMS  OF KKCURSIVC  DEFINITIONS 

A. Infoduction 

B. Extension of the Model of Chapter 2 

C. Analogs of the Results of (hapter ; 

D. Analogs of the Results of Chapter .', 

E. Fixpoint Computations for Systems of Recursive Definitions 
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A. Introuactlun 

In thin  Appem'lx, we extt-nd the model and the results of Chapters 

y - ry to systems of n-cursivt definitions.  Wc show how all definitions 

can he  extended in a natural way .o that the results valid for single 

recursive ck-flni ;io.is possess analogs which arc valid for systems of 

recursive defiritionb: these reduce tu the previous ones when the system 

reduces  to a single definition.  The extensions are rather straight- 

forward except for the notations which unfortunately tend to obscure 

the simplicity >f the results. 

B. Extension ol the Model of Chnpter g 

In order CO express systems of recursive definitions, we need 

a straightforward  extension of the alphabet and terms  of Chapter 2. 

The alphabet it  extended tu include k function vr.iiable letters,  F 

Pg» *••' ^fc'  antl th« terms are constricted ;n t le r.ame way as in 

? 2,2,2  except that ,2,2  (vj is changed to: "If   -  are 
D 

terras, then F (T. , ..., -r j is a term, for every j, \  *. ]   c  k. " 

Such terms are H.JW denoted by  -, F,x;,s F,x , .... ff(F,Ä), 

"'F,x) ,  etc . .. 

The definition of substitution in f ?..?.. is trivially .leralized 

for these terms. The definition of interpret...lions in § ?.$.! need not 

be modified. 

The weak and strong values of terms arc easily generali ::ed in 

the following way: 

(a)    U'eak Values 

Given a    k-tuple       f =     fj,   ....  fk    of partial   functions 
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f*    C  pf   • L); ,   1  <   j  '. k,  «nd    an    n-tuple   -   =       ?       ...,,r of elements 
J n In 

F
i  

c  k    M  fd}•     the weak value  of a  term    a    for T »  f and 

x =  i»   ,     denoted  aff,?),   is defined  inductively as  in   "  2.J.2  («), 

except   for  case   (v)  which  is modified as   follows: 

"if am Fr»1 an        for  scmic' J»   ^ < j Ä ki  then: 

- if the vector <«-(?,?),   •••> '?n'f, ?) ' does not belong to 

lD+)n,   then    a Ci.f)   ■ d. 

- otherwise,     if,   for  some     i,   l< i  $ n,     cr^'ltf)  ■ UJ.   then 

cr (iff) ■ m, 

- otherwise. aiiti)  - f.(tf| (!,?), ...,o^(!,?)).*' 

''b)    Strong Values 

Given a k-tuple     f -   ' f.,...,   f     - of partial  functions 

.  +, 
frpf    i'D),l'j<k and an n-tuple -   = < F.,...,f    >        of 

elements    ?.  c   £. U fd},     I & I i n,  the st-ong value of a  term 

a    for    F =  f    and x ~ P,    denoted     3 ^f,^1   !■ defined  inductively as  in 

'  2.3.2.   (h),  except   for case   fv) whic!; is -nodified as  follows. 

"if    ry = F*(«i   •••!   (Ü     for sor'L' 3»  I * J  '- k«   then. 

- if the vector < ^(f,^), ..., «.('i?) - does not belong to 

(D+)n,  then %itl)   =  d, 

- otherwise S!,?) 1 fjC^^.ö. •••. ^^f.ö)." 

Comments similar to those in 5 2.5.5 may bo made regarding the 

lelations between the two types of evaluations.  In particular, for every 

k-tuple  f = < fy, .... £, ^ of partial functions f. € pf (D), 1 ^ j ^ k, 
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and for t-vetv e    ■    ''   ,   we ha\t', for every term > F, x) 

where  f , natural extension of  I  is defined bv: 

i     .    .. ., i. 

Correct  terms are defined as terms whose strong values always belong to 

A and compatible terms as terms whose strong values always belong to D ; 

the formal definitions are straightforward extensions of those in 

A system of rt-cursive definitions will be a system of the form: 

?|{x)  = T1 F, x) 

Pk(K)  - Tk(P. «)   , 

where there is exactly one recursive definition for each F,, 

1 < j ^ k, and where each  - . , 1 -. j ■ k, is a compatible term. 

We abbreviate  such a system by the  notation: 

F 'x •= - (F, x). 

Fixpoints ot such systems are defined in  e followirg way, 

which  is a natural generalization of the definitions of 

(a ■    Weak hixpoints: 

A k-tuple f -  f. f     of partial  functions 
i k 

f    G  pf    1)' ,   1  ^ j  ^ k,     is a   weak  iixpoint  of a  system of 
j n 
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recursive  detinitions     F  (x)  •-   T   (P,  SC)     iff: 

Y I C  Dn,    'j,   1  -  j   -; k:     f (5)   -   ~.(f,   f) 

(b) Strong  Fixpoints 

A k-tuple     I ■ < f.f   ...»  f. of partial  functions 

f.  G  pf  I'D  ) ,   1  --  j   -, k,   is a strong  i   ^point  of a  system of 

recursive definitions,   F  (x) <=   T   (F,   ;■:' , 

iff: 

V i e fD+)n, vj. 1 - j - k, f.(?) - V.ff. |) - 

It is convenient to associate functionals to a system of 

recursive definitions, or, more generally,  to a k-tuple of correct 

terms. Let us show, as an example,  how to associate a functional &    to 

a k-tuple  or ■ ' ai > •••!&,    of correct terms. 

g will be a functional mapping an element f of(D ) -♦ (D ) —' 

into an element ~j  \ f] defined as follows : 

+,n       ,  -Kk Le t     f - •    f  ,   ....   t>    b« ar  clement of (D )    -> (D )   , 

where,   for every  j,   1 i j  ^ k,   f.     is  an clement  of  (D  )    -» D    = pf  (D  ); 

*& - -+n T__ +k 
then    a\i\    maps every    | C (D }     into    a [ f ]   (i) G   \t  )      defined by: 

I [!l(f) - • \ (f, ?) ^k (f, f) >  . 

where, for every j,  1 i, j i k, ^.(f, P)  is the strong value 

of a  for F = f and x = f . 

-' We use the notation S -» R to ^enote the set of mappings of S 
into R. Notice that (D ) -»(D) is trivially isoinorphic to 
[pfn ^

+)1R. 
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If a     is a    k-tuple  of cumpatiblc     terms,   then    a      is   simply 

a  functional  over       1»   '       -»      D )   •       tl we  take a  system of  recursive 

definitions     F    x     ■    -     r,x)i        in    which 

=  ■    T, .   .. .,   •-        ,   then     -     is  a  k-tuple   of  compatible   terms,  and 
1 k 

it   is  clear   chat  a   st rona   fixpoint   of   the   system,   as we  have 

defined   it   above,   ll  equivaleiitly  a   tixpoint   of   the  functional     t   • 

A  completely  analogous discussion can be  carried  out   for  the 

weak   fixpjints. 

We now need  to  generalize  the  definition of computations     of 

5  2«^«2«   to  systems.     An elementary  cunputation    of a  term    cr(r»x) 

for  x     ■ C €   {'■>       ,   tisin^ a   system  of     recursive  definitions 

F   fx   ■'=  -     F,   x     is  a   sequence   of  teiTiis     f^. ,   I 3t 0 1   such  that: 

^a) ry0 - a F.c]     ; 

fb'1 i-ur  every     t i 0   ! 
c 

- either (M)s  r/.+, r S  ^. ,  where  | is free of x, 

and the equation : 

1(1, )   V  f.    holds for every f C ,'[) )  -»(D) 

ot fh'<    : 

F, B 
a. .■,  r     S t».     for some j, 1 ^ j < k . 
i+l       ,-N    i 

F. a) 
J 

—J   The detinition of     ry    F,B)    where   \     i s an n-tuple  of  terns   i1 

a  straightforward  adaptation of  the  definition Riven  in , .^.1. 
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The dcfiaitiona of computations.  tcTmiiiat JUM computatiuns  and 

innermost cumputat i^ms are easily transposed from those in Chaptor ?. 

A computed funtUon over Ü |   ot a system of recursive 

definitions  F xV^I (f#J) is any  f t   ^S^ _,  fo
+jk such that) 

for every  c e ^D '" and every  , 1 -: j < k: 

i'    if  fi/c ^ ^ > then  there is a computation of F fx, 

for x = c,  using the system of recursive definitions, which 

terminates with f.(c); 

[ii' if  fi c   ■•  then rlure is a computation of F.fx) 

for x = c, ising the system of recu:sive definitions, which does 

not terminate. 

Similarly, one defines a computed function over 0° by substitutinf 

u  tor 'D J  everywhere in the above definition. 

c'  Analogs of the Hesults of Chapter 

With these definitions, all the results in Chapters - - 5 are 

easily translated into results for systems of recursive definitions. 

l/   -    + n    + k 
if f C (Ö / -#(0 , , for every j, 1 - j i k,  f. is the partial 

function of pf^ (D  defined by:  -/ c r   (Jf   .   r<(|) is the j.^ 

exponent of f (|) r ^)k     'j-th projection' 
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Vor example we  have: 

'a ihfurem 1: i ..r every lyttw "f recursive definition«, 

every  itron|   (ixpeint   '.» a;i extension-    oi   t-ven,-  tompntfd   function 

over   ' D 

ro pi^'v.   this, -nt-   applies t fu   same technique« as  in 

Chapter  D  to each  CLXiipunetit   P    x   .     All   the   preparatory  lemnas  of 

J..'.l,       '',.?.i-      dm!       '..•.•■ apply wttli  the  obvious  change  of 

notations:     F   int >  f,     pf     D into     )     n    ^    D^ etc. 

b; Slmiiarly,   the   Umruis  ami  Theorem !    of  section   J..'7> 

concerning   innermost  computed   luncti'ns  «nd weak   fixpoints 

extend  ijinediat<ly to systems  oi   recureive definition«. 

D •       Analogs   oi   tl ^e   Results   o|   riiaptt |   k. 

The study oi monotOQicity «nd continuity  for systims oi 

recursive deÜnitl ni   procei-ds «long  th<    lin«i   of   f'hapt. t   .,   except 

that   it   is   bettet   to  regard   'Ü .    ' as  |   .art...!!;,    >rder«d 

set with  the appropriate  properties  «ad  apply  the  geneni]   tbeorflM  of 

.'..1   to   it   raLhci   than to  try   to   regard   it   as   ■   sit   oj   partial 

functions. 

The  notion  of a non-'tonically   structured   systrni    >)   r.cursi  e 

definitions     is   the   same as  in  the  cas>'   o|   a   single   recursive 

definition-   tli^   ,'ivtn   functions must   br IKmotonic« 

'/"■■ +n +k 
^If  f,   v    are tlementi  of    0 )     -. (D }   ,  we   say  that   g   is  .ir 

extensinu  of   I   ,   dtnotei1     f  -   g,   if and  only   If:     j.   1   •    ;        k 
fj   *  81     whcre   ii  a:id  8.  are  the   J-th  Projections   of   t  and   ' 
which er«    . lernents  of pi       D  )). 

B 
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Then, tor monotonical Iv ItniCtured tirms, the lemmas of - .-.^.c' , 

....-, . . , a:ui . . contefi Inj iaonotorl( It) snd continuity carry 

over to the ia^-  oi   sever*!   fund Mriablei tfithout  any  di   'iii.iiy. 

Tlu   relevant     p.Trti.il    irderlngi ' and   D      .    D   ' 

arc  extension     »rderings   ifiiotecl    *     ftnd  defined    n the  fnllowing way* 

f I, i € [D       •  D )  i I < I   ifi Vji i     _• ■ K. f. • g.  ; 

- f. i r jn   ,   i^k     ; f <i   iff ■ ;, i -  j - k, f. . g.  . 

In fact the funciionals  - and    associated with a monotonically 

structured system J: recursive definitions also have properties of mono- 

tonicity and contiiuity, from vhlch the analogs of Theorems z and ^ 

follow directly.  let us co into SMT« detail for 'he derivation of 

the analog ol Theonm ■': 

Let P x   - -  r,x  be a norotonicilly structured system of 

recursive definitions.  Then we first show that    is a monotonic 

-t-vn    + k and continuous napping over the set of monotonic mappings of 'D    -♦ 'D 
4  k 

i.e. over  mi  D    .  The arguments follow thole of  r .7.. .  and 
n 

■ - .'.-., usin>' ir addition the fact that is monoti'T-ic rcsp. 

continuous ■ iff foi every j, 1 ■ ; < k, -. is monotonic resp. 

continuous . 

+  k 
Then one shows tl.at the set M = ml  D    has i     least element, 

n 

= •  ., ..., .  , and is cham-c Insed. 

The analog of Theorem  now follows easilv be application of the 

general Theorems of    ...1,  i1. says that 

"r.verv monotonically striictured system Ol -»»cursive definitions 
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- -  - I 
K x   <»T<F,   x     has  a monotonic   least   «t r;)n^   fixpolnt.      i 

In additii>n 

f • lub I   "  (   - 

6 The analog of Theorem -, ,   concerning,  the   least weak   fixpoint     f 
T 

is also true. 

E-       fixpoint   Conpui.itions   for  Systems   of  Recursive  Definitions. 

Finally,   the   fixpoint   computations  which  we  have   seen  in 

Chapter  5   can be  M^ily  extended  to compute  the     least   fixpoints 
0 
f,    and   f-     of a BOnotOflieftUy   structured   system   )f   recursive 

definitions. 

Tho   standard   sinplj {jcations       need  no modiiiftitm.     Also,   if 

D     is a n.nutonicaiiv   structured   tern     free   of ;"     sut.i,   that    ^   )? a 

for  some  a   /   „,   ta-n       unp  a      • a.       Analog  of  th(,   Uit   Umm  of   ?  ,^} 

ItW   full   substirutions     are  easily  extended   to  terns  wUh  several 

function variables       the   inductive definition  of   Ftub.t,^     will  be 

identical   tO   the   one   i:, .,A   oxc,pt   fof   casc     v        ^.^   ^^^ 

11 f   ' '   >i    '1     %,   •   for   some   j,   1   <   j   .   k,     then: 

fsahsl
T    '    "   'j        r'       Fsubst_   [j^),   ...,   Ksubst,^;   j." 

f 

The   important   lemma   of     '   ' .-A  has   it«j  ami no  K„^ U-   I •i  nub   its analog here,  which  can 

be  .xpressed,   foi   .xample,     in   the   following  ^ay: 

•^Por *«y correct ttm 0    and any  k-tuple     :    of  compatible  terns. 

1^1 



+    k     - + n 
for any   f r     pf   'D t f €  (D  )   ! n 

Piubut   [«) (I, i     ~ ;- ' i., '}." 

I'hi'   ful 1   c anput at ion    ül   a   11 rm     g     1",x>'   for x - c G   (D  )     using 

a monutonica 1 iv ttructurcd syitM oi  recursive definitioni F y    ~~(T,x.] 

will  be  I   sequeiict   oi   i t rms     >       such   that: 

o 
/F.c)   . 

and,   for every  p , 

'^.'p+l     =   Sünp   '^p} , 

0 p+I      =   FsabSt_'^p+1N 

These  lennb  have  the properry     'analogous  to  the  first   lemma  of 

« 5.5.3)  tliat: 

"     - +     k 
f       pf    D   ''      .     Yp 9 C: n 

«gjl    '' ^ p4I       f '      -' V        ^      f    ' 

Then  tFif  analog      of  tiie  second  lemma  of     •     .•.J,    also holds. 

It  says: 

'Let     Q    be a mnotonlcally   structured  correct   term, 

F x       ■    -   i-,   xv   a monotonically  structured     system of  recursive 

+ .0 
definitions,  ant!  lit     c r     D       .     ^hen,   the  full  computation  of    ^ 
for        x - i.        usm;   the tfttes  terminate! with    a 

ft 
iff a (f fC)   a; it does net terminate iff Q  f ,C; = j.  (f is the 

' T 

least strong fi/point of the system ." 

The compute i function f  obtained by full computation of the 
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system  !' x       i.x  will lu. the k«tuplc   t   , ..., t    , 
C , i (. , k 

where,   for  ivt-rv    |,      !   ■    ]   •   k.     1      . <;  pi      D        is   the   parlial 
c, i n 

hnution  obtained  by   the   tull   COBputation   ol      1 .   xN     ualni   the   system. 

Then  the  analu^; ol   Theori 5       says   that     I     ■ t_,   i.e.   the   c(.imputed 

function  obtaiiud   by   [ulj   c iTOt)utat i on  oj   a TOnotonlcajU^y   alructured   system 

of  recursive  dgfinitiona     I»   the   least  sLi.iiiy   iivpoint   of  the  system. 

The definitions  and   fixpoint     propcrtl«!  concerning  Innermost 

cemputations  carrv   over  to  svstems  of  recursive definitions  in a  similar 

fashion: 

Parallel   Umeraoat   Substitutions       are  readily extended  by 

changing  '„ . • . 1     v     to: 

cr * 'i    '^   ■••..        for  IOMC   j,   1   •   j   •-  k : 

if,   for  every   L,      1        i   ■   n,    ,.   ■ a.,   a.   6   C,     then: 
1 - _1 '•—1 

Psubst -     I     =   • ,   i",      i     . .     ,, 
J I - n 

othc rwiaa: 

Psubst       a    =  P(Ptubat       »J,   •..,   Psubst     [a 
f ,        ' 7       n 

The  definition  of   the   standard   innt/rmost   ciTOputation     is   likewise 

readily  extended. 

The  computed   function   t       otaained  by   the  standard   innermost 

computation  of  the   system     1    '        - "   r,   >"       „ill     be   the  k-tuple 

fs  T'^'^s k    *    where,   for  every   i,   1 - j  •   k,     f    .  r  pf    I;;   is 

obtained  bv   the   standaid   limemoat   compitation  of   V   'x       using  the   system. 

Then we  have  the analogoua       l   the  lemma  of     ■   JJ^.J and  of 

Theorem 6.     The   litter will   read,   foi   e-ample: 

"the canputed   function obtained  by  standard   innermost  computation 

1 



of a mono ton it-a 1 ly strutturcJ system of recursive definitions 

is the least weak lixpoint oi   the system." 

Likewise, the gnuralization of safe innermost computations 

can be done with no special difficulty.  The definitions  of the 

safe simplifications and safe innermost substitutions are unchanged, 

since they depend only on the given lunctions. 

The analog of Theorem 7 is again true and reads: "Any coaputed 

function obtained by safe innermost computation of a monotonically 

structured system of recursive definitions is the least weak fix- 

point of the system". 

19* 
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